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ABSTRACT

Title of Dissertation: BUFFER ENGINEERING FOR

M |G|∞ INPUT PROCESSES

Minothi A. Parulekar, Doctor of Philosophy, 1999

Dissertation directed by: Professor Armand Makowski

Department of Electrical Engineering and

Institute for Systems Research

We suggest the M |G|∞ input process as a viable model for representing the

heavy correlations observed in network traffic. Originally introduced by Cox, this

model represents the busy–server process of an M |G|∞ queue with Poisson inputs

and general service times distributed according to G, and provides a large and

versatile class of traffic models. We examine various properties of the M |G|∞

process, focusing particularly on its rich correlation structure. The process is

shown to effectively portray short or long–range dependence simply by controlling

the tail of the distribution G.

In an effort to understand the dynamics of a system supporting M |G|∞ traf-

fic, we study the large buffer asymptotics of a multiplexer driven by an M |G|∞

input process. Using the large deviations framework developed by Duffield and



O’Connell, we investigate the tail probabilities for the steady–state buffer content.

The key step in this approach is the identification of the appropriate large devia-

tions scaling. This scaling is shown to be closely related to the forward recurrence

time of the service time distribution, and a closed form expression is derived for the

corresponding limiting log–moment generating function associated with the input

process. Three different regimes are identified.

The results are then applied to obtain the large buffer asymptotics under a

variety of service time distributions. In each case, the derived asymptotics are

compared with simulation results.

While the general functional form of buffer asymptotics may be derived via

large deviations techniques, direct arguments often provide a more precise de-

scription when the input traffic is heavily correlated. Even so, several significant

inferences may be drawn from the functional dependencies of the tail buffer prob-

abilities. The asymptotics already indicate a sub–exponential behavior in the case

of heavily–correlated traffic, in sharp contrast to the geometric decay usually ob-

served for Markovian input streams. This difference, along with a shift in the

explicit dependence of the asymptotics on the input and output rates rin and c,

from ρ = rin/c when G is exponential, to ∆ = c− rin when G is sub–exponential,

clearly delineates the heavy and light tailed cases. Finally, comparison with similar

asymptotics for a different class of input processes indicates that buffer sizing can-

not be adequately determined by appealing solely to the short versus long–range

dependence characterization of the input model used.
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Chapter 1

Introduction

1.1 Failure of Poisson modeling

The last fifty years have seen a remarkable increase in the number and complexity

of available communications services. Networks today support a wide variety of

applications, ranging from FTP and TELNET to video and the World Wide Web.

The statistical profile of network traffic has also undergone considerable change.

In recent years, traffic measurement studies in a wide range of currently working

packet networks, e.g., Ethernet LANs [24,41,42], VBR traffic [26], WAN traffic [54],

WWW traffic [13], have uncovered striking differences between traditional and

modern traffic patterns. Unlike conventional voice traffic which begins to resemble

white noise upon aggregation, modern traffic traces show no signs of “smooth-

ing ”at larger time–scales. Instead, the traces remain persistently “bursty”over

multiple time–scales, displaying a property of statistical invariance called self–

similarity. Furthermore, the correlations observed in the accumulated data are

significantly heavier than the weak, exponentially decaying correlations seen in

traditional telephony. In fact, the underlying correlation structure shows time–

1



dependencies characteristic of long–range dependent processes.

Long–range dependence (LRD) is inherently a non–Markovian property by

which the long–term correlations in a process, though individually small, exhibit a

slow, hyperbolic decay and as a result are non–summable. This behavior is in sharp

contrast to the exponentially decaying (thus summable) correlations traditionally

observed in short–range dependent (SRD), mostly Markovian, models [7, 11].

Classical traffic models, based almost exclusively on Poisson–like assumptions

about traffic arrival patterns and on exponential assumptions about resource hold-

ing requirements, are singularly ill-equipped to account for time dependencies re-

cently observed in network traffic. Superposing several such SRD processes to

model LRD is a poor option, akin to expressing a hyperbolic function as the sum

of several exponentials. Such models require an increasing number of parameters

in order to incorporate an even larger number of time–scales. This “failure of Pois-

son modeling” along with the need for parsimonious, yet accurate, traffic models

has generated an increased interest in a number of alternate traffic models which

capture observed (long–range) dependencies.

Proposed models include fractional Brownian motion (FBM) input processes

[6, 47, 49], fractional Auto-regressive Integrated Moving Average (F-ARIMA) pro-

cesses [30,31], fractal shot–noise driven (FSN) processes [55,56], as well as several

others [3, 19, 61]. In this dissertation, we focus our attention on a model that is

extremely versatile, yet remains mathematically convenient: The M |G|∞ input

process.

2



1.2 Why the M |G|∞ process ?

The M |G|∞ input model is the busy server process of a discrete–time M |G|∞

system. Customers, generated according to a (discrete–time) Poisson process with

rate λ, are offered to an infinite server group. The required service times are i.i.d.

random variables (rvs), with σ denoting the generic service time (expressed in

number of time slots). The process {bt, t = 0, 1, . . .} that counts the number of

busy servers at the beginning of a time slot is referred to as the M |G|∞ input

process.

The process was studied early on by Cox as a model for textile yarn processing

[11,12]. His analysis indicated that it was extremely versatile, capable of exhibiting

correlations over a wide range of time scales simply by controlling the tail behavior

of the distribution of the service time σ. If the autocovariance of lag h for a

stationary M |G|∞ process is denoted by Γ(h), then

Γ(h) = λE [σ] e−vh , h = 0, 1, . . . (1.2.1)

where vh = − lnP [σ̂ > h] and σ̂ is the forward recurrence time associated with

σ (Proposition 2.3.2). This relation already indicates the tremendous amount

of flexibility in modeling positive correlation structures. The degree of positive

correlation exhibited by an M |G|∞ input process can be further characterized by

the sum of the autocovariances (1.2.1), or index of dispersion of counts (IDC). As

is shown later in Proposition 2.3.4, we have

IDC ≡
∞∑
h=0

Γ(h) =
λ

2
E [σ(σ + 1)] , (1.2.2)

leading to the simple conclusion that the process is SRD (i.e., IDC finite) if and only

if E [σ2] is finite. In addition, the correlation in the process uniquely determines

3



the distribution G of the service time σ (Proposition 2.3.3), a valuable property

for simple parametric modeling.

The class of M |G|∞ input processes also has other features desirable in a

model, in that it is tractable and parsimonious, being completely defined by the

pair (λ,G). Further it is stable under multiplexing, i.e., the superposition of several

independent M |G|∞ processes can be represented by an M |G|∞ input process. In

addition to these natural advantages, research investigating the M |G|∞ model for

some wide area applications reports a good fit to TELNET and FTP data using a

(integer) log–normal service time [54].

However, its relevance to modern–day traffic modeling is perhaps best explained

through its connection to an attractive model for aggregate packet streams pro-

posed by Likhanov, Tsybakov and Georganas [43]. They combine traffic generated

by several ON–OFF sources with a Pareto distributed activity period, and show

that under appropriate conditions, increasing the number of sources yields a lim-

iting behavior identical to the M |G|∞ input stream with a Pareto distributed σ.

The limiting argument used is similar to the Palm–Khintchin Theorem used to

justify the Poisson model for interactive data traffic, and is easily seen to hold for

arbitrary activity period distributions. This identification of the M |G|∞ model

of Cox as the limiting regime of a large number of ON–OFF sources might help

explain its success in modeling packet traffic stream in certain applications [54],

and points to the M |G|∞ input process as a natural alternative to present traffic

models, at least for certain multiplexed applications.

4



1.3 System Implications

The presence of strong correlations in network traffic is certainly expected to have a

serious impact on various aspects of network design including storage requirements,

resource allocation, scheduling policies and congestion control. In particular, ef-

fective buffer provisioning must now take into account the statistical properties

of the traffic supported by the network, or run the risk of increased congestion,

packet loss and delay. To gain some insights into this fundamental issue, we an-

alyze the steady–state buffer content at a multiplexer fed by a heavily correlated

traffic stream.

For the sake of concreteness, we consider a discrete–time single server queue

with infinite capacity and constant release rate of c (cells/slot), as a surrogate for

a multiplexer. The number of customers in the input buffer at time t is denoted by

qt. The input stream is assumed to be stationary with rate rin < c, in which case

the buffer content admits a stationary regime, say q∞. The steady–state buffer

tail probability P [q∞ > b] then provides a reasonable performance index, as this

quantity is indicative of the buffer overflow probability in a corresponding finite

buffer system with b positions.

Results involving the asymptotic behavior of the tail probability P [q∞ > b]

have been the focus of several researchers, in view of their role in creating effective

bandwidths for admission control, and other resource allocation policies [27,29,37,

38,63]. In particular, Glynn and Whitt derived asymptotics of the form

lim
b→∞

1

b
lnP [q∞ > b] = −γ, γ > 0, (1.3.1)

under fairly general conditions [27]. These asymptotics naturally bring to mind

5



approximations of the form

P [q∞ > b] ∼ e−bγ , (b→∞); (1.3.2)

of course, such extrapolations must be approached with caution [10]. Nevertheless,

both (1.3.1) and (1.3.2) are useful in providing qualitative insights into the queue-

ing behavior at the multiplexer, and could in principle provide effective guidelines

for buffer sizing.

Unfortunately, the general conditions under which (1.3.1) was derived did not

cover input processes with a high degree of correlation, and hence could not be

applied to LRD input processes. One of the earliest available results on the queue-

ing behavior of LRD processes, due to Norros, showed that the tail probability of

buffer occupancy for a fractional Brownian motion (FBM) input does not exhibit

the exponential decay evident in (1.3.1), and is in fact Weibullian in nature [49].

Similar results examining the buffer asymptotics for other LRD input processes

have followed since, including [4, 8, 43].

In [16], using large deviations techniques, Duffield and O’Connell developed a

generalised version of Glynn and Whitt’s classical result [27]. Under this extension

several input processes could now be analyzed, including those with a high degree of

correlation, that had previously been inadmissible under the stricter requirements

imposed by Glynn and Whitt. Furthermore, the extended result was in complete

agreement with Glynn and Whitt’s predictions of exponential decay under classical

conditions, i.e., for lightly correlated input processes.

However, in the case of highly–correlated input streams, the linear scaling evi-

dent in (1.3.1) was now replaced by a generalised mapping h : IR+ → IR+, giving
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rise to asymptotics of the kind

lim
b→∞

1

h(b)
lnP [q∞ > b] = −γ, γ > 0. (1.3.3)

Several applications were also provided in [16] as illustrations of the generalised

Duffield and O’Connell result. Of particular interest was the instance when the

input stream was FBM in nature. The resulting asymptotics in this case were

consistent with those previously derived by Norros [49].

1.3.1 Motivation for Research

The research presented in this dissertation was initiated in an effort to understand,

and if possible, isolate the impact of long–range dependence in traffic on buffer dy-

namics, specifically on the tail probability P [q∞ > b]. To this effect, the queueing

behavior was examined under two differing sets of traffic assumptions, namely, the

M |G|∞ input model with Pareto service times, and the fractional Gaussian noise

(FGN) input model (essentially the discrete–time analog of Norros’ FBM input

model) [51]. Both models were selected in view of their being LRD, mathemati-

cally convenient, and able to provide a statistically good fit in diverse applications.

The steady state buffer asymptotics in the FGN case were derived as an appli-

cation of the Duffield and O’Connell results discussed earlier, and were shown to

have the same Weibull-like characteristics visible in the qualitatively similar FBM

case. However, applying the Duffield and O’Connell results to the M |G|∞ input

process proved a challenging task, as some of the required conditions failed to hold.

In place of the equality (1.3.3), we were only able to establish the lower bound

lim inf
b→∞

1

h(b)
lnP [q∞ > b] ≥ −γ?, (1.3.4)
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for positive constant γ?, and mapping h : IR+ → IR+.

The obvious next step then, was to derive the counterpart to (1.3.4), i.e., the

upper bound

lim sup
b→∞

1

h(b)
lnP [q∞ > b] ≤ −γ?, (1.3.5)

for some positive constant γ? ≤ γ?, under the same mapping h : IR+ → IR+, pos-

sibly by an extension of the original Duffield and O’Connell result. To complicate

matters, we discovered at this point that their proof as given in [16], was in fact

incomplete.

We therefore proceeded to correct the arguments provided in [16], with the

intention of adapting them to include the M |G|∞ process with Pareto service

times and eventually, extending the derived asymptotics to apply in a broader

context, i.e., for a general distribution G [52, 53].

In the interim, Duffield drew our attention to the fact that the lower bound

established in [51] was erroneous, as the terms of Gärtner-Ellis theorem, essential

to the proof, did not hold under Pareto service times. A version of the lower bound

was later provided by Towsley et. al. [45] using direct arguments instead of the

usual large deviations approach.

However, the most relevant contribution of this thesis, the identification of the

functional form of the tail probability P [q∞ > b], in itself remains significant and

offers valuable insights into the impact of heavy correlations in input traffic on

queueing behavior. Furthermore, the observation made in [51], that buffer–sizing

cannot be adequately determined simply through the LRD versus SRD nature of

traffic is still both valid and pertinent.
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1.4 Overview

The dissertation is organized as follows: Chapter 2 provides a mathematical repre-

sentation for the M |G|∞ input process. The necessary conditions for stationarity

and ergodicity are investigated via its generating function. The effect of the tail

behavior of the service distribution G on the correlation structure is examined

in detail. Particularly relevant in the context of practical traffic modeling is the

invertibility result presented in Proposition 2.3.3 which claims that an M |G|∞

process is uniquely defined by its correlation structure [39].

Chapter 3 analyzes the buffer dynamics of a single server system driven by a

general input process via large deviations techniques. Applying extensions of the

Duffield and O’Connell results [16], we establish asymptotics of the form (1.3.4)

and (1.3.5) under reasonably general conditions for positive constants γ? and γ?,

and mapping h : IR+ → IR+.

The key step in the identification of the function h and the constants γ? and γ?,

is the selection of two monotone increasing, IR+–valued scaling sequences {vn, n =

0, 1, . . .} and {an, n = 0, 1, . . .}, so that the limit

Λ(θ) ≡ lim
n→∞

1

vn
lnE

[
exp

(
θvn

an
Sn

)]
, θ ∈ IR,

exists and is non–trivial for some θ > 0.

In Chapters 4 and 5, the general buffer asymptotics derived previously are

applied in the particular context of the M |G|∞ input process. Chapter 4 focuses

exclusively on the selection of appropriate scalings a and v and the subsequent

form taken by the limiting log-moment generating function Λ.

As in the determination of the correlation structure, we find that the tail of the

distribution G plays a vital role both in identifying the scalings, and in predicting
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the resulting form of the function Λ. The consequent derivation of the constants

γ? and γ?, and of the mapping h : IR+ → IR+ follows in Chapter 5.

Chapter 6 presents a comparison between theory and simulation for a number

of distributions G, in order of increasing tails, in other words, in order of increasing

time dependence in the input process. Finally, in Chapter 7, we close with a short

discussion and a few suggestions regarding future avenues of research.

A few words on the notation used in this dissertation: For any scalar x in

IR, we write bxc to denote the integer part or floor of x and dxe to denote its

ceiling. All rvs are defined on some probability triple (Ω,F ,P), with E denoting

the corresponding expectation operator. Finally two rvs X and Y are said to be

equal in law if they have the same distribution, a fact we denote by X =st Y . Weak

convergence is denoted by =⇒.
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Chapter 2

M |G|∞ input processes

As mentioned earlier, an M |G|∞ input process is the busy server process of a

discrete–time infinite server system fed by a discrete–time Poisson process of rate

λ (customers/slot) and with generic service time σ (expressed in number of time

slots) distributed according to G. It is an example of a marked process where the

underlying point process is Poisson, and the marks associated with each arrival are

i.i.d. rvs.

In this chapter, we present various facts concerning the busy server process of

a discrete–time M |G|∞ system. In Section 2.1, we formally define this system and

develop a mathematical representation for the M |G|∞ process. In Section 2.2,

we investigate the conditions under which the process is stationary, ergodic and

reversible. Finally, we discuss various expressions of the correlations exhibited by

the M |G|∞ model, including its covariance, long versus short–range dependence

and self–similarity.
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2.1 The discrete–time M |G|∞ system

2.1.1 System Description

Consider a system with infinitely many servers. During time slot [t − 1, t), t =

1, 2, . . ., βt new customers arrive into the system. Customer i, i = 1, . . . , βt, is

presented to its own server and begins service by the start of slot [t, t+1); its service

time has duration σt,i (expressed in number of slots). The number of customers

initially present in the system at t = 0 is denoted by b; customer i, i = 1, . . . , b,

brings σ0,i units of work to its server. Let bt denote the number of busy servers,

or equivalently of customers still present in the system, at the beginning of slot

[t, t+ 1).

The IN–valued rvs b, {βt, t = 1, 2, . . .} and {σt,i, t = 0, 1, . . . ; i = 1, 2, . . .}

satisfy the following assumptions: (i) The rvs are mutually independent; (ii) The

rvs {βt, t = 1, 2, . . .} are i.i.d. Poisson rvs with parameter λ > 0; (iii) The rvs

{σt,i, t = 1, 2, . . . ; i = 1, 2, . . .} are i.i.d. with common pmf G on {1, 2, . . .}. We

denote by σ a generic IN–valued rv distributed according to the pmf G. Through-

out we shall assume that this pmf G has a finite first moment, or equivalently, that

E [σ] <∞.

No additional assumptions are made on the rvs {σ0,i, i = 1, 2, . . .} which repre-

sent the service durations of the b customers present in the system at the beginning

of the slot [0, 1), so that various scenarios can in principle be accommodated: If

the initial customers start their service at time t = 0, then it is appropriate to

assume that the rvs {σ0,i, i = 1, 2, . . .} are also i.i.d. rvs distributed according to

the pmf G. On the other hand, if we take the viewpoint that the system has been

in operation for a long time, then these rvs {σ0,i, i = 1, 2, . . .} may be interpreted
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as the residual work (expressed in time slots) that the b “initial” customers require

from their respective servers before service is completed. In general, the statistics

of the rvs {σ0,i, i = 1, 2, . . .} cannot be specified in any meaningful way, except

for the situation when the system is in statistical equilibrium or steady state.

To that end, we find it useful to introduce the forward recurrence time σ̂ asso-

ciated with the rv σ; the pmf of σ̂ is given by

P [σ̂ = t] = ĝt =
P [σ ≥ t]

E [σ]
, t = 1, 2, . . . . (2.1.1)

or alternatively,

P [σ̂ ≤ t] =
E [min(σ, t)]

E [σ]
= 1−

E [(σ − t)+]

E [σ]
.

2.1.2 Mathematical Representation of bt, t = 0, 1, . . .

Fix t = 0, 1, . . .. We note that

bt = b
(0)
t + b

(a)
t , (2.1.2)

where the rvs b
(0)
t and b

(a)
t describe the contributions to the number of customers in

the system at the beginning of slot [t, t+ 1) from those initially present (at t = 0)

and from the new arrivals, respectively.

Customer i present initially in the system at t = 0, survives at time t iff its

service time σ0,i > t, i = 1, 2, . . . , b. This gives rise to the representation

b
(0)
t =

b∑
i=1

1 [σ0,i > t] . (2.1.3)

The rv b
(a)
t can also be interpreted as the number of busy servers in the system

at time t, given that the system was initially empty (i.e., b = 0). Of the βs arrivals
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at time s, only those with service requirement exceeding t− s time slots remain in

the system at time t ≥ s. In other words, if b
(a,s)
t denotes the number of customers

present in the system at time t, having arrived during the interval [s − 1, s), we

have

b
(a,s)
t =

βs∑
i=1

1 [σs,i > t− s] , s = 1, 2, . . . , t.

Summing over all such contributions for s = 1, 2, . . . , t, gives the total number of

survivors at time t as

b
(a)
t =

t∑
s=1

βs∑
i=1

1 [σs,i > t− s] . (2.1.4)

Fixing s = 1, 2, . . . , t, we note that

E
[
exp

(
θb

(a,s)
t

)]
= E

[
exp

(
θ

βs∑
i=1

1 [σs,i > t− s]

)]

= E

E[exp

(
θ

n∑
i=1

1 [σs,i > t− s]

)]
n=βs


= E

[
E [exp (θ1 [σ > t− s])]βs

]
= E

[((
eθ − 1

)
P [σ > t− s] + 1

)βs]
, θ ∈ IR

upon invoking the i.i.d nature of rvs {βt, t = 1, 2, . . .} and {σt,i, t = 0, 1, . . . ; i =

1, 2, . . .}, and their mutual independence.

As βs is a Poisson rv with rate λ, it holds that

E
[
χβs
]

= eλ(χ−1), χ > 0, (2.1.5)

and substituting χ =
(
eθ − 1

)
P [σ > t− s] + 1 in (2.1.5), we find

E
[
exp

(
θb

(a,s)
t

)]
= exp

(
λ
(
eθ − 1

)
P [σ > t− s]

)
,

i.e., the rv b
(a,s)
t is Poisson with rate λP [σ > t− s].
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Under the enforced assumptions, the Poisson rvs b
(a,1)
t , b

(a,2)
t , . . . , b

(a,t)
t are inde-

pendent, hence b
(a)
t is also Poisson by virtue of (2.1.4) with rate λ

t∑
u=1

P [σ ≥ u].

As the distribution of {b(0)
t , t = 0, 1, . . .} remains unspecified, we are as yet un-

able to characterize the distribution of the M |G|∞ input process {bt, t = 0, 1, . . .}.

Section 2.2 sees the emergence of one possible characterization in a fairly natural

fashion.

2.1.3 The log–moment generating function

A useful tool in establishing several properties and results concerning any random

process is its moment generating function or Laplace transform; we now introduce

the notation necessary for its computation in the context of the M |G|∞ process

{bt, t = 0, 1, . . .}.

For every n = 1, 2, . . ., let T n denote the set of all sequences Tn = (t1, t2, . . . , tn),

where {ti, i = 1, 2, . . . , n} are finite, non-negative, non–decreasing integers that di-

vide the interval (0,∞] into n+1 non-overlapping intervals {Ij , j = 0, 1, 2, . . . , n}.

In other words,

Ij =


(0, t1] , j = 0

(tj, tj+1] , j = 1, 2, . . . , n− 1

(tn,∞] , j = n.

With the convention t0 = 0 and tn+1 =∞, we can rewrite the previous definition

in the more convenient form

Ij = (tj, tj+1], j = 0, 1, . . . , n. (2.1.6)

Let Qn be the set of all real–valued sequences Qn = (θ1, θ2, . . . , θn). The log–

moment generating function of the random vector (bt1 , bt2 , . . . , btn) is then given
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by

L(Tn, Qn) = lnE

[
exp

(
n∑
i=1

θibti

)]
, Tn ∈ T

n, Qn ∈ Q
n. (2.1.7)

From (2.1.2), we have

L(Tn, Qn) = L(0)(Tn, Qn) + L(a)(Tn, Qn), (2.1.8)

where

L(0)(Tn, Qn) = lnE

[
exp

(
n∑
i=1

θib
(0)
ti

)]

and

L(a)(Tn, Qn) = lnE

[
exp

(
n∑
i=1

θib
(a)
ti

)]

for every Tn in T n and Qn in Qn.

Employing representations (2.1.3) and (2.1.4), we derive alternate expressions

for L(0)(Tn, Qn) and L(a)(Tn, Qn); the details of their derivation can be found in

Appendix A.1.

Proposition 2.1.1 Fix n = 0, 1, . . .. For every Tn in T n and Qn in Qn, we have

L(0)(Tn, Qn) = lnE

[
exp

(
b∑

j=1

n∑
r=1

Θr1 [σ0,j ∈ Ir]

)]
(2.1.9)

and

L(a)(Tn, Qn) = λE [σ]
n∑
j=1

Φj(Tn, Qn), (2.1.10)

with

Θ0 = 0, and Θr ≡
r∑
i=1

θi, r = 1, 2, . . . , n, (2.1.11)
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and

Φj(Tn, Qn) ≡
(
1− eΘj

)
P [σ̂ ∈ Ij]

+

j∑
k=1

eΘj−Θk
(
eθk − 1

)
P [σ̂ + tk ∈ Ij] , (2.1.12)

where the forward recurrence time σ̂ associated with σ is given by (2.1.1).

From Proposition 2.1.1 and (2.1.8) we conclude for each n = 1, 2, . . . that

L(Tn, Qn) = λE [σ]
n∑
j=1

Φj(Tn, Qn)

+ lnE

[
exp

(
b∑
j=1

n∑
r=1

Θr1 [σ0,j ∈ Ir]

)]
(2.1.13)

for every Tn in T n and Qn in Qn.

2.2 M |G|∞ process: stationary version

2.2.1 Stationarity

In general, the busy server process {bt, t = 0, 1, . . .} given by

bt =
b∑
i=1

1 [σ0,i > t] +
t∑

s=1

βs∑
i=1

1 [σs,i > t− s] , t = 0, 1, . . . .

is not a (strictly) stationary process. However it does have a stationary version

denoted from now on by {b?t , t = 0, 1, . . .}, and obtained by appropriately selecting

the initial conditions b = b?0 and σ0,i = σ?0,i, i = 1, 2, . . ..

This section analyzes the restrictions placed on the initial conditions in order to

achieve stationarity; we continue to use the notation of Section 2.1.3. We introduce

a translation operator ⊕ such that for each n = 1, 2, . . .,

Tn ⊕ h ≡ {ti + h, i = 1, 2, . . . , n}
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and

Ij ⊕ h ≡ (tj + h, tj+1 + h], j = 0, 1, . . . , n

for any Tn in T n and h = 0, 1, . . ..

In order for the busy server process to be strictly stationary, it is necessary

and sufficient that

(b?t1+h, b
?
t2+h, . . . , b

?
tn+h) =st (b?t1 , b

?
t2
, . . . , b?tn), h = 0, 1, . . . ; Tn ∈ T

n

for every n = 1, 2, . . .. As a process is uniquely defined by its log–moment generat-

ing function, we have equivalently that a necessary and sufficient condition for

stationarity is given by

L?(Tn ⊕ h,Qn) = L?(Tn, Qn), h = 0, 1, . . . ; Tn ∈ T
n; Qn ∈ Q

n

for every n = 1, 2, . . ., where

L?(Tn, Qn) ≡ lnE

[
exp

(
n∑
i=1

θib
?
ti

)]
, Tn ∈ T

n; Qn ∈ Q
n.

Further analysis allows this second condition to be re-expressed in the simpler

yet equivalent forms given in the following Proposition:

Proposition 2.2.1 Fix n = 0, 1, . . .. For each pair (Tn, Qn) in (T n,Qn) the fol-

lowing requirements are equivalent:

(i)

L?(Tn ⊕ h,Qn) = L?(Tn, Qn), h = 0, 1, . . . ; (2.2.1)

(ii)

L(0)?(Tn, Qn) = λE [σ]

(
−1 +

n∑
j=0

eΘjP [σ̂ ∈ Ij ]

)
; (2.2.2)
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(iii)

L?(Tn, Qn) = λE [σ]
n∑
k=1

(
eθk − 1

) n∑
j=k

eΘj−ΘkP [σ̂ + tk ∈ Ij ] . (2.2.3)

Detailed arguments substantiating these equivalences are provided in Appendix

A.2.

If we select n = 1 in (2.2.2) we find

E
[
eθb

?
0
]

= exp
(
λE [σ]

(
eθ − 1

))
, θ ∈ IR,

thus characterizing b?0 as a Poisson variable of mean λE [σ].

By the independence of rvs b?0 and {σ?0,i i = 1, 2, . . .}, we see from (2.1.9) that

L(0)?(Tn, Qn) = lnE

exp

 b?0∑
j=1

n∑
r=1

Θr1
[
σ?0,j ∈ Ir

]
= ln

(
∞∑
k=0

ITn,Qn(k, λ)P [b?0 = k]

)
, n = 1, 2, . . .

where

ITn,Qn(k, λ) ≡ E

[
exp

(
k∑
j=1

n∑
r=1

Θr1
[
σ?0,j ∈ Ir

])]
, n = 1, 2, . . . . (2.2.4)

By the Poisson nature of rv b?0, Proposition 2.2.1 (ii) is equivalent to the con-

dition

∞∑
k=0

(λE [σ])k

k!
ITn,Qn(k, λ) = exp

(
λE [σ]

(
n∑
j=0

eΘjP [σ̂ ∈ Ij ]

))
(2.2.5)

Expanding the right–hand side in the form of a power series, we conclude that the

process {b?t , t = 0, 1, . . .} will be stationary if and only if for each n = 1, 2, . . ., it

holds that

∞∑
k=0

(λE [σ])k

k!

( n∑
j=0

eΘjP [σ̂ ∈ Ij]

)k

− ITn,Qn(k, λ)

 = 0, (2.2.6)

for every pair (Tn, Qn) in (T n,Qn).
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2.2.2 Ergodicity

A traditional approach often used in investigating the ergodicity of a stationary

process involves a form of asymptotic independence known as mixing. A stationary

process {Xn, n = 0, 1, . . .} is said to be mixing or strongly mixing if for all k =

1, 2, . . ., and all Borel subsets A and B in B(IRk), it holds that

lim
n→∞

P [(X1, X2, . . . , Xk) ∈ A, (Xn+1, Xn+2, . . . , Xn+k) ∈ B]

= P [(X1, X2, . . . , Xk) ∈ A]P [(X1, X2, . . . , Xk) ∈ B] . (2.2.7)

The following proposition makes use of the well-known result that any strongly

mixing process is necessarily ergodic [36, p. 489]; the proof is outlined in Appendix

A.3.

Proposition 2.2.2 The stationary process {b?n, n = 0, 1, . . .} is strongly mixing

and therefore ergodic.

2.2.3 Reversibility

Proposition 2.2.3 The stationary and ergodic version {b?n, n = 0, 1, . . .} of the

busy server process is reversible in that

(b?0, b
?
1, . . . , b

?
n) =st (b?n, b

?
n−1, . . . , b

?
0)

for all n = 0, 1, . . .

Proof. As defined earlier in Section 2.2.1, consider any Qn ≡ (θ1, θ2, . . . , θn) in

IRn and denote its mirror image by Qr
n ≡ (θn, θn−1, . . . , θ1).
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The process {b?n, n = 0, 1, . . .} is reversible iff for all n = 0, 1, . . ., we have

L?(Hn, Qn) = L?(Hn, Q
r
n) (2.2.8)

where Hn = (1, 2, . . . , n).

In Appendix A.4 we show that this condition does indeed hold true for the

stationary and ergodic version {b?n, n = 0, 1, . . .} of the M |G|∞ input process.

2.2.4 M |G|∞ process: stationary representation

A number of distributions of the rvs {σ?0,j , j = 1, 2, . . .} satisfy condition (2.2.6),

thereby ensuring that the corresponding M |G|∞ process is both stationary and

ergodic. In order to narrow down our selection, we can introduce additional re-

strictions as we deem convenient.

One possible criterion for selection is that the candidate distribution have the

desirable property of being independent of the arrival rate λ. In other words,

for a fixed n = 1, 2, . . . , and (Tn, Qn) in (T n,Qn), the expression ITn,Qn may be

rewritten as a function of just one variable, say

ITn,Qn(k, λ) = ITn,Qn(k), k = 0, 1, . . . (2.2.9)

for all λ > 0. Under this criterion, the requirement (2.2.6) takes the form

∞∑
k=0

(λE [σ])k

k!

( n∑
r=0

eΘrP [σ̂ ∈ Ir]

)k

− ITn,Qn(k)

 = 0,

for every λ > 0, or equivalently,

ITn,Qn(k) =

(
n∑
r=1

eΘrP [σ̂ ∈ Ir]

)k

(2.2.10)
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for each k = 0, 1, . . ..

By the definition of ITn,Qn provided in (2.2.4), we may rewrite (2.2.10) as

E

[
exp

(
n∑
r=0

ΘrA
k
r

)]
=

(
n∑
r=1

eΘrP [σ̂ ∈ Ir]

)k

(2.2.11)

for each k = 0, 1, . . ., where the rvs

Akr ≡
k∑
j=1

1
[
σ?0,j ∈ Ir

]
, r = 0, 1, . . . , n, (2.2.12)

constitute an (n+ 1)–length random vector given by Ak ≡ (Ak0, A
k
1, . . . , A

k
n).

We note that the value of rv Akr depends only on how many of the k customers

present initially in the system have service times that lie in the interval Ir, r =

0, 1, . . . , n; given this information, it is then entirely unaffected by the service time

of any particular customer.

To present this idea more rigorously, we fix k = 0, 1, . . ., and introduce Akn, the

set of all (n+ 1)–length vectors αk ≡ (αk0, α
k
1, . . . , α

k
n), such that

0 ≤ αkr ≤ k, r = 0, 1, . . . , n, and
n∑
r=0

αkr = k.

The set Akn in fact, constitutes the range of the random vector Ak introduced

earlier. The statement Ak = αk may then be taken to mean that exactly αkr of

the initial k customers have service requirements in the interval Ir, r = 0, 1, . . . , n.

Of course, summing over all the intervals will give the total number of customers

present in the system at time 0, whereby we have
n∑
r=0

Akr =
n∑
r=0

αkr = k.

Using this terminology, the left–hand side of condition (2.2.11) may be rewrit-

ten as

E

[
exp

(
n∑
r=1

ΘrA
k
r

)]
=

∑
αk∈Akn

exp

(
n∑
r=1

Θrα
k
r

)
P
[
Ak = αk

]
. (2.2.13)
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Turning our attention to the right-hand side of (2.2.11) we have(
n∑
r=0

eΘrP [σ̂ ∈ Ir]

)k

=
∑
βk∈Akn

(
k

βk0 β
k
1 . . . βkn

) n∏
r=0

(
eΘrP [σ̂ ∈ Ir]

)βkr (2.2.14)

via the multinomial theorem. Equating (2.2.13) and (2.2.14), we derive an alternate

representation of condition (2.2.11) given by

∑
αk∈Akn

exp

(
n∑
r=1

Θrα
k
r

)(
P
[
Ak = αk

]
−

(
k

αk0 α
k
1 . . . αkn

) n∏
r=0

(P [σ̂ ∈ Ir])
αkr

)
= 0. (2.2.15)

As (2.2.15) holds under all selections of Qn ∈ Qn, it then follows that

P
[
Ak = αk

]
=

(
k

α0 α1 . . . αn

) n∏
r=1

P [σ̂ ∈ Ir]
αkr , k = 0, 1, . . . (2.2.16)

It is merely a matter of algebra to deduce from this result that

P
[
σ?0,k ∈ Ir

]
= P [σ̂ ∈ Ir] , r = 0, 1, . . . , n; k = 0, 1, . . . .

(The result may be inductively proved for each case k = 1, 2, . . .; the details are

left to the reader).

As the selection of the intervals Ir, r = 0, 1, . . . , n, is arbitrary and as our

analysis is valid for all n = 1, 2, . . ., we conclude that {σ?0,i, i = 1, 2, . . .} are

identical in distribution to that of the forward recurrence time σ̂ associated with

σ.

At this point we pause to recapitulate the ground covered so far in this section.

Our requirement that the M |G|∞ process be stationary, imposed a restriction on

the initial conditions b?0 and {σ?0,j , j = 1, 2, . . .}: The rv b?0 was necessarily Poisson

with rate λE [σ] and {σ?0,j , j = 1, 2, . . .} were required to satisfy condition (2.2.6).
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Along with stationarity, the M |G|∞ process automatically inherited properties of

ergodicity and reversibility without imposing additional constraints.

Various distributions of {σ?0,j , j = 1, 2, . . .} satisfy (2.2.6); we selected only

those that did not have any functional dependence on λ. This characterized the

rvs {σ?0,j , j = 1, 2, . . .} as having marginal densities identical to the rv σ̂, but still

did not isolate their joint distribution.

The simplest and most convenient of all the qualifying distributions that satisfy

(2.2.16) is undoubtedly the one for which {σ?0,j, j = 1, 2, . . .} are i.i.d. with common

distribution Ĝ; therefore we proceed with this selection for the remainder of this

thesis.

Having made these observations, we now state the following proposition that

renders the selection of the initial conditions inconsequential during asymptotic or

steady–state analysis; its proof can be found in Appendix A.5.

Proposition 2.2.4 For any choice of the initial condition rv b and of the service

times {σ0,i, i = 1, 2, . . .},

{bt+k, t = 0, 1, . . .} =⇒ {b?t , t = 0, 1, . . .} (k →∞) (2.2.17)

where {b?t , t = 0, 1, . . .} is the stationary and ergodic version of the busy–server

process.

In light of Proposition 2.2.4, we assume the stationary version of the M |G|∞

process for the remainder of this document, denoted hereafter without its demar-

cating asterisk and given by

bt =
b∑
i=1

1 [σ̂i > t] +
t∑

s=1

βs∑
i=1

1 [σs,i > t− s] , t = 0, 1, . . . , (2.2.18)

where
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(i) The rv b is Poisson with rate λE [σ],

(ii) The rvs {σ̂i, i = 1, 2, . . .} are independent of b and i.i.d. with distribution Ĝ

given by (2.1.1).

2.3 Correlation structure

As mentioned before, one of the most attractive features of the M |G|∞ process

is its rich correlation structure. It is capable of exhibiting a remarkable range

of time-dependencies simply by changing the distribution G. In particular, the

correlation is keenly sensitive to the tail of the distribution Ĝ (thus of G). With

this in mind, let v? : IR+ → IR+ denote a mapping such that

e−v
?
n = P [σ̂ > n] , n = 0, 1, . . . . (2.3.1)

In this section we examine the influence of v? in determining the strength of

correlation shown by the process. To this end, we review notions of association,

long and short–range dependence and self–similarity, all of which can be used to

characterize correlations in time.

2.3.1 Association

The first indication that the rvs {bt, t = 0, 1, . . .} exhibit some form of dependence

can already be traced to the fact that these rvs are indeed positively correlated in

a strong sense: For all t = 0, 1, . . ., we write bt ≡ (b0, b1, . . . , bt).

Proposition 2.3.1 For any choice of the initial condition rv b and of the service

times {σ0,i, i = 1, 2, . . .}, the rvs {bt, t = 0, 1, . . .} are associated, in that for any
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t = 0, 1, . . . and any pair of non–decreasing mappings f, g : IN t+1 → IR, we have

E
[
f(bt)g(bt)

]
≥ E

[
f(bt)

]
E
[
g(bt)

]
(2.3.2)

provided that the expectations exist and are finite.

The notion of association was introduced by Esary, Proschan and Walkup

in [22]. For the sake of completeness, we include some properties of association

derived in [22, p. 1467].

(P1) Any subset of associated random variables is associated;

(P2) The union of two independent sets of associated rvs is also associated;

(P3) The set consisting of a single rv is associated;

(P4) Non–decreasing functions of associated rvs are associated.

Proof. Recall that the collections of rvs {b(0)
t , t = 0, 1, . . .} and {b(a)

t , t = 0, 1, . . .}

are independent. Hence, in view of (P2) and (2.1.2), we need only show the

association (2.3.2) for each of these two collections.

Fix s = 0, 1, . . . and i = 1, 2, . . .. The rv σs,i being associated by itself by (P3),

we see that the rvs 1 [σs,i > u], u = 0, 1, . . . are also associated by (P4). Further,

by independence (P2), the rvs

{
n∑
i=1

1 [σs,i > u] , u = 0, 1, . . .

}
are associated for

each n = 1, 2, . . ., or putting it differently, the rvs

{ βs∑
i=1

1 [σs,i > u], u = 0, 1, . . .

}
are conditionally associated given βs (where β0 denotes b).

Using the notation b(s),u =

βs∑
i=1

1 [σs,i > u] for u = 0, 1, . . ., we conclude from

this last remark that for any pair of non–decreasing mappings f, g : INu+1 → IR,

E
[
f(b(s),u)g(b(s),u)

]
= E

[
E
[
f(b(s),u)g(b(s),u)|βs

]]
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≥ E
[
E
[
f(b(s),u)|βs

]
E
[
g(b(s),u)|βs

]]
≥ E

[
E
[
f(b(s),u)|βs

]]
E
[
E
[
g(b(s),u)|βs

]]
(2.3.3)

thus implying that the rvs {b(s),u, u = 0, 1, . . .} are associated. The passage to

(2.3.3) is a consequence of the rv βs being associated by (P3), and of the non–

decreasing nature of the mappings n→ E
[
f(b(s),u)|βs = n

]
and n→ E

[
g(b(s),u)|βs = n

]
.

The desired conclusion on the rvs {b(0)
t , t = 0, 1, . . .} follows directly from

(2.3.3) when s = 0. In the case of the collection {b(a)
t , t = 0, 1, . . .}, we arrive at

the same conclusion by the independence of the rvs {b(s),u, s = 0, 1, . . .} and the

fact that b
(a)
t =

t∑
s=1

b(s),u when u = t− s.

Proposition 2.3.1 already suggests that the covariance structure of {bt, t =

0, 1, . . .} satisfies

cov[bt, bt+h] ≥ 0, t, h = 0, 1, . . . . (2.3.4)

We now proceed to compute its exact form.

2.3.2 Covariance

The covariance structure of the M |G|∞ process can be calculated directly from

(2.2.18). However, it is simpler to derive it by the partial differentiation of the

generating function of process {bt, t = 1, 2, . . .} given by (2.2.3). The following

proposition gives the final form of the covariance function Γ(h); its proof is available

for perusal in Appendix A.6.
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Proposition 2.3.2 The covariance structure of the stationary and ergodic version

{bt, t = 0, 1, . . .} of the busy server process is given by

Γ(h) ≡ cov[bt, bt+h] = λE [σ]P [σ̂ > h] = λE [σ] e−v
?
h , t, h = 0, 1, . . . (2.3.5)

An alternative expression is given in the following lemma.

Lemma 2.3.1 We have

Γ(h) = λE
[
(σ − h)+

]
, h = 1, 2, . . . (2.3.6)

Proof. Fix h = 1, 2, . . ., and note that

Γ(h) = λE [σ]P [σ̂ > h]

= λE [σ]
∞∑

r=h+1

P [σ̂ = r]

= λ

∞∑
r=h+1

P [σ ≥ r]

= λ

∞∑
r=0

P [σ > h+ r]

= λ

∞∑
r=0

P
[
(σ − h)+ > r

]
= λE

[
(σ − h)+

]
.

In the case of the stationaryM |G|∞ input process, the autocorrelation function

γ : IN → IR, obtained from (2.3.5) is given by

γ(h) ≡
Γ(h)

Γ(0)
= P [σ̂ > h] , h = 0, 1, . . . (2.3.7)
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The correlation structure is completely determined by the pmf of σ̂ (thus of σ).

It turns out that the inverse is true as well. Indeed,

γ(h)− γ(h+ 1) = P [σ̂ > h]−P [σ̂ > h+ 1]

=
1

E [σ]
P [σ > h] , h = 0, 1, . . . (2.3.8)

so that the mapping h → γ(h) is necessarily decreasing and integer–convex. We

conclude from (2.3.8) (with h = 0) that

E [σ]−1 = 1− γ(1) (2.3.9)

with γ(1) < 1 necessarily by the finiteness of E [σ]. Combining (2.3.8) and (2.3.9)

we find that

P [σ > h] =
γ(h)− γ(h+ 1)

1− γ(1)
, h = 0, 1, . . . (2.3.10)

Note also from (2.3.10) that

E [σ] =
∞∑
h=0

P [σ > h] =
1− lim

h→∞
γ(h)

1− γ(1)

and (2.3.9) imposes lim
h→∞

γ(h) = 0. A moment of reflection readily leads to the

following invertibility result.

Proposition 2.3.3 An IR+–valued sequence {γ(h), h = 0, 1, . . .} is the auto-

correlation function of the M |G|∞ process (λ, σ) with integrable σ if and only

if the corresponding mapping h → γ(h) is decreasing and integer–convex with

γ(0) = 1 > γ(1) and lim
h→∞

γ(h) = 0, in which case the pmf G of σ is given by

(2.3.10).
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2.3.3 Long and Short–range Dependence

The strength of the positive correlation exhibited by the sequence {bt, t = 0, 1, . . .}

can be formalized as follows: We say that the sequence {bt, t = 0, 1, . . .} exhibits

short range dependence if

∞∑
h=0

Γ(h) <∞.

Otherwise, the sequence {bt, t = 0, 1, . . .} is said to be long range dependent

[6, 7]. As we now show, for M |G|∞ processes this dependence can be partially

characterized through the scaling {v?t , t = 1, 2, . . .}.

Proposition 2.3.4 We have the relation

∞∑
h=0

Γ(h) = λE [σ]E [σ̂] =
λ

2
E [σ(σ + 1)] , (2.3.11)

so that the stationary sequence {bt, t = 0, 1, . . .} is short range dependent (SRD)

(resp. long range dependent (LRD)) if and only if E [σ̂] is finite (resp. infinite).

Proof. From (2.3.6), we see that

∞∑
h=0

Γ(h) = λE [σ]
∞∑
h=0

P [σ̂ > h]

= λE [σ]E [σ̂]

= λE [σ]
∞∑
r=1

rP [σ̂ = r]

= λE [σ] (E [σ])−1
∞∑
r=1

rP [σ ≥ r]

= λ

∞∑
r=1

r

∞∑
t=r

P [σ = t]
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= λ

∞∑
t=1

P [σ = t]

(
t∑

r=1

r

)

=
λ

2

∞∑
t=1

t(t+ 1)P [σ = t]

and the conclusion (2.3.11) is now immediate.

Proposition 2.3.4 gives rise to a simple test to check if the process {bt, t =

0, 1, . . .} is SRD; we present it in the form of the following corollary.

Corollary 2.3.1 If lim
n→∞

v?n
lnn

= K, then the process {bt, t = 0, 1, . . .} is SRD

(resp. LRD) if K > 1 (resp. K < 1).

The proof rests on the well–known result

∞∑
n=1

n−δ <∞, δ > 1, (2.3.12)

and on the lemma stated below, the proof of which is fairly simple and has not

been included.

Lemma 2.3.2 Consider two IR+–valued sequences {αn, n = 0, 1, . . .} and {βn, n =

0, 1, . . .} such that lim
n→∞

αn

βn
=∞. Then

∞∑
n=1

αn <∞ necessarily implies
∞∑
n=1

βn <∞,

while
∞∑
n=1

βn =∞ implies
∞∑
n=1

αn =∞.

Proof of Corollary 2.3.1. Set αn = n−δ with δ > 0 and βn = e−v
?
n , n = 1, 2, . . .,

in which case

lim
n→∞

αn
βn

= lim
n→∞

e−δ lnn

e−v?n
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= lim
n→∞

e−δ lnn+v?n

= lim
n→∞

e(
v?n
lnn
−δ) lnn

=

 ∞ K > δ

0 K < δ.
(2.3.13)

When K > 1, select δ such that 1 < δ < K, so that
∞∑
n=1

αn <∞ by (2.3.12), and

lim
n→∞

αn

βn
=∞ by (2.3.13). Therefore, applying Lemma 2.3.2, we have

∞∑
n=0

e−v
?
n = E [σ̂] <∞,

and the related process {bt, t = 0, 1, . . .} is SRD.

Next, set αn = e−v
?
n and βn = n−δ, n = 1, 2, . . ., with δ > 0, giving

lim
n→∞

αn

βn
=

 0 K > δ

∞ K < δ.
(2.3.14)

When K < 1, select δ such that K < δ < 1, and note that
∞∑
n=1

βn =∞ by (2.3.12),

and lim
n→∞

αn
βn

=∞ by (2.3.14). Therefore, applying Lemma 2.3.2, we conclude that

∞∑
n=0

e−v
?
n =∞,

and the process {bt, t = 0, 1, . . .} is LRD.

For the case K = 1, the test fails and no conclusion may be drawn without knowing

the exact form of v?n.

2.3.4 Self-similarity

An interesting class of processes can be identified through the notion of second–

order self–similarity. We briefly review some relevant definitions and properties
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concerning self–similar processes; detailed information regarding the subject can

be found in [11] and [60].

Consider a process {at, t = 0, 1, . . .}. For each m = 1, 2, . . ., we introduce the

associated m–averaged process {a(m)
t , t = 0, 1, . . .}, given by

a
(m)
t ≡

1

m

m−1∑
k=0

amt+k, t = 0, 1, . . . , (2.3.15)

and the m–normalized process {ămt , t = 0, 1, . . .} achieved through the transforma-

tion

ă
(m)
t ≡ m1−Ha

(m)
t =

1

mH

m−1∑
k=0

amt+k, t = 0, 1, . . . , (2.3.16)

where 0 < H < 1 is the index of normalization.

The motivation behind naming a process self–similar is evident from the fol-

lowing definition:

Definition 2.3.1 A strictly stationary process {at, t = 0, 1, . . .} is called strictly

self–similar with Hurst parameter H, if for each m = 1, 2, . . . we have

ă
(m)
t =st at, t = 0, 1, . . . , (2.3.17)

where {ă(m)
t , t = 0, 1, . . .} is the m-normalized process (2.3.16) with index of nor-

malization H [60].

Clearly, a strictly self–similar process maintains its probabilistic structure when

scaled and appropriately normalized.

Definition 2.3.1 is far too restrictive to be more than theoretically useful. As

is evident via (2.3.16) and (2.3.17), a strictly self–similar process must necessarily

have a zero–mean. Further, if the process {at, t = 0, 1, . . .} is positive and non–

degenerate, neither {at, t = 0, 1, . . .}, nor {at−E [at] , t = 0, 1, . . .} can be strictly
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self–similar [60]. We therefore shift our focus to the broader class of exactly second–

order self–similar processes.

Definition 2.3.2 A wide–sense stationary process {at, t = 0, 1, . . .} is said to be

exactly second–order self–similar with Hurst parameter H, if for each m = 1, 2, . . .

we have

var[ă
(m)
t ] = var[at], t = 0, 1, . . . , (2.3.18)

where {ă(m)
t , t = 0, 1, . . .} is the m-normalized process (2.3.16) with index of nor-

malization H [60].

Under the assumption that the process {at, t = 0, 1, . . .} is wide–sense sta-

tionary, it is plain that for each m = 1, 2, . . ., the rvs {a(m)
t , t = 0, 1, . . .} and

{ă(m)
t , t = 0, 1, . . .} also form wide–sense stationary sequences with correlations

Γ(m)(h) ≡ cov[a
(m)
t , a

(m)
t+h] and γ(m)(h) ≡

Γ(m)(h)

Γ(m)(0)
, h = 0, 1, . . . ,

and

Γ̆(m)(h) ≡ cov[ă
(m)
t , ă

(m)
t+h] and γ̆(m)(h) ≡

Γ̆(m)(h)

Γ̆(m)(0)
, h = 0, 1, . . . ,

respectively.

We may now rewrite (2.3.18) as

Γ̆(m)(0) = Γ(0), m = 1, 2, . . . .

or alternatively as

Γ(m)(0) = Γ(0)m−2(1−H), m = 1, 2, . . . . (2.3.19)
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A requirement equivalent to (2.3.19) is given by

Γ(h) = Γ(0)γH(h), h = 0, 1, . . . (2.3.20)

where the Hurst parameter of the process is H and the mapping γH : IN → IR+ is

given by

γH(h) ≡
1

2

(
|h+ 1|2H − 2|h|2H + |h− 1|2H

)
, h = 0, 1, . . . (2.3.21)

The parameter H being in the range (.5, 1), the mapping γH is strictly decreas-

ing and integer–convex with γH(0) = 1, and behaves asymptotically as

γH(h) ∼ H(2H − 1)h2H−2 (h→∞). (2.3.22)

By Proposition 2.3.3 we can interpret γH as the autocorrelation function of the

M |G|∞ input process (λ, σH) with

P [σH > r] =
|r + 2|2H − 3|r + 1|2H + 3|r|2H − |r − 1|2H

4(1− 22H−2)
, r = 1, 2, . . .

so that the M |G|∞ input process (λ, σH) is exactly second–order self–similar with

Hurst parameter H.

For convenient application, even the relatively larger class of exactly second

order self–similar process proves too narrow. We therefore relax our definition as

follows:

Definition 2.3.3 The sequence {at, t = 0, 1, . . .} is said to be asymptotically

second–order self–similar if

lim
m→∞

γ(m)(h) = γH(h), h = 1, 2, . . . , (2.3.23)

in which case H is still referred to as the Hurst parameter of the process.
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For the M |G|∞ process (λ,E [σ]) to be asymptotically (second–order) self–

similar it suffices to have

P [σ > r] ∼ r−αL(r),

with 1 < α < 2, for some slowly varying function L : IR+ → IR+, in which case

H =
3− α

2
.
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Chapter 3

General Buffer Asymptotics for a multiplexer

Section 1.3 emphasized the importance of taking into account the statistical nature

of the traffic indigenous to a network in its design. In this chapter we tackle a

problem of particular interest in network design, namely, buffer provisioning. To

gain some insights into this fundamental issue, we analyze the content of an infinite-

sized buffer, at a multiplexer being fed by a random traffic stream. Assuming the

system achieves statistical equilibrium, the steady–state queue size q∞ provides

valuable guidelines in estimating the size of buffer in various practical applications.

In particular, the tail probability P [q∞ > b] provides a good indicator to the cell

loss probability in the corresponding finite buffer system with b positions.

Computing these tail probabilities, either analytically or numerically, represents

a challenging problem in the absence of any underlying Markov property for a

general input process. Instead, we focus on the simpler task of determining the

tail behaviour of the queue–length distribution in some asymptotic sense. More

precisely, we seek asymptotic results of the kind

lim
b→∞

1

h(b)
lnP [q∞ > b] = −γ (3.0.1)

for some positive constant γ and mapping h : IR+ → IR+.

37



In order to obtain (3.0.1), our focus has primarily been on Large Deviations

techniques. This approach has already been adopted by a number of authors

[16, 27,38], and typically involves computing the upper and lower bounds

lim inf
b→∞

1

h(b)
lnP [q∞ > b] ≥ −γ?, (3.0.2)

and

lim sup
b→∞

1

h(b)
lnP [q∞ > b] ≤ −γ?, (3.0.3)

for some constants γ? > 0 and γ? > 0, and analyzing conditions under which the

two coincide.

We begin the discussion with a brief description and mathematical representa-

tion of the system in Section 3.1. Section 3.2 covers the background necessary for

later analysis and presents a brief overview of Large Deviations techniques that

apply in our context. The subsequent sections develop asymptotic estimates of

P [q∞ > b] via extensions of existing LD results.

3.1 The buffer sizing problem

The multiplexer is modeled as a discrete–time single server queue with infinite

buffer capacity and constant release rate of c cells/slot under the first–come first–

serve discipline. The input stream is represented by {bn, n = 1, 2, . . .} where bn+1

is the number of new cells arriving at the start of time slot [n, n+1). Let qn denote

the number of cells remaining in the buffer by the end of slot [n − 1, n), so that

qn+bn+1 cells are ready for transmission in the next slot. If the multiplexer output

link can transmit c cells/slot, then the buffer content sequence {qn, n = 0, 1, . . .}
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evolves according to the Lindley recursion

q0 = q; qn+1 = [qn + bn+1 − c]
+, n = 0, 1, . . . (3.1.1)

for some initial condition q.

With the notation ξn = bn − c, the recursion (3.1.1) becomes

q0 = q; qn+1 = [qn + ξn+1]
+, n = 0, 1, . . . (3.1.2)

yielding the solution

qn = max

(
0, q +

n∑
i=1

ξi, sup
j=2,...,n

(
n∑
i=j

ξi

))

= max

(
0, q +

n∑
i=1

ξi, sup
j=1,2,...,n−1

(
j∑
i=1

ξn+1−i

))
, n = 0, 1, . . .

If the process {bn, n = 1, 2, . . .} is reversible, then we have

{bi, i = 1, 2, . . . , n} =st {bn+1−i, i = 1, 2, . . . , n},

for each n = 1, 2, . . ., and it holds that

qn =st max

(
0, q +

n∑
i=1

ξi, sup
j=1,2,...,n−1

(
j∑
i=1

ξi

))

= max

(
q + Sn, sup

j=0,1,...,n−1
Sj

)
with

S0 = 0; Sj =

j∑
i=1

ξi, j = 1, 2, . . . . (3.1.3)

Under certain conditions, the multiplexer will reach statistical equilibrium,

that is qn =⇒n q∞, where q∞ represents the steady–state buffer content at the

multiplexer.

The following proposition, due to Loynes, outlines these conditions [46].
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Proposition 3.1.1 If the sequence {ξn, n = 1, 2, . . .} is stationary and ergodic,

with average rate E [ξ1] < 0, then (3.1.2) admits a steady state regime, in that

qn =⇒n q∞ with

q∞ =st sup{Sj, j = 0, 1, . . .} (3.1.4)

where {Sj , j = 0, 1, . . .} is given by (3.1.3). Further, if E [ξ1] > 0, then qn =⇒n ∞.

In other words, if the process {bn, n = 1, 2, . . .} is stationary and ergodic with

rin = E [b1] < c, then the system will eventually reach steady–state for any choice

of the initial condition q and will then be described as stable. Though sufficient,

the stationarity and ergodicity of the input process is by no means necessary for

the system to reach stability. In fact, it has been shown [5] that Loynes’ result

can be extended to Lindley recursions driven by sequences which couple with their

stationary and ergodic versions.

3.2 The Theory of Large Deviations: A brief

overview

To begin with, we introduce two scaling sequences {vn, n = 0, 1, . . .} and {an, n =

0, 1, . . .}. A scaling sequence is any monotone increasing IR–valued sequence {vn, n =

0, 1, . . .} such that lim
n→∞

vn =∞. Throughout we use the notation (v, a) to denote

a particular selection of scalings v, a : IN → IR+.

The generalized inverses of the sequence {an, n = 0, 1, . . .} are the mappings

a−1
l , a−1

r : IR+ → IN given by

a−1
l (x) ≡ inf{s ∈ IN : as ≥ x}, x ≥ 0 (3.2.1)
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and

a−1
r (x) ≡ sup{s ∈ IN : as ≤ x}, x ≥ 0 (3.2.2)

with the convention a0 = 0. We refer to the mappings a−1
l and a−1

r as the left and

right generalized inverses, as they are left and right continuous, respectively. By

their definition, it is plain that

aa−1
r (x) ≤ x ≤ aa−1

l (x), x ≥ 0. (3.2.3)

For every pair (v, a) we postulate the existence of functions g, h : IR+ → IR+

such that h is monotone increasing with lim
b→∞

h(b) =∞, and the limits

lim
b→∞

va−1
l (b/y)

h(b)
= lim

b→∞

va−1
r (b/y)

h(b)
= g(y), y > 0 (3.2.4)

all exist and are finite. The mapping g : (0,∞) → IR+ is necessarily monotone

decreasing.

Condition (3.2.4) is not as stringent as it seems at first. In fact, it holds broadly

in applications and often has a rather simple form.

Lemma 3.2.1 For every pair (v, a), the monotone mappings g, h : IR+ → IR+

satisfy (3.2.4) iff

lim
n→∞

vn
h(yan)

= g(y), y > 0. (3.2.5)

Proof. Fix y > 0. We introduce the variables n ≡ a−1
l (b/y), and m ≡ a−1

r (b/y),

b > 0. Clearly, by definitions (3.2.1) and (3.2.2) the values taken by n and m

traverse the entire range {0, 1, 2, . . .}. Furthermore, as b increases to ∞, so do n

and m.
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Via (3.2.3), we have the inequalities

yam ≤ b ≤ yan, b > 0,

whence

vn

h(yan)
≤

va−1
l (b/y)

h(b)
and

va−1
r (b/y)

h(b)
≤

vm

h(yam)
(3.2.6)

for any monotone increasing function h : IR+ → IR+.

Assume that there exist mappings g, h : IR+ → IR+ such that (3.2.5) holds.

Then, by (3.2.6) we get

g(y) ≤ lim inf
b→∞

va−1
l (b/y)

h(b)
and lim sup

b→∞

va−1
r (b/y)

h(b)
≤ g(y).

The scaling v being monotone increasing, (3.2.4) follows directly upon noting that

a−1
r (x) ≤ a−1

l (x) for all x > 0.

Conversely, assume the existence of mappings g, h : IR+ → IR+ in (3.2.4). We

have

lim sup
n→∞

vn

h(yan)
≤ g(y) and g(y) ≤ lim inf

m→∞

vm

h(yam)
,

and (3.2.5) is obtained.

Recall from [23, p. 269] that a positive Borel function f : IR+ → IR+ is regularly

varying if the limits

lim
t→∞

f(tx)

f(t)
= F (x), x ≥ 0 (3.2.7)

all exist (possibly as an extended real number). It is well known [23] that the

limiting function F is necessarily of the form

F (x) = xρ, x ≥ 0 (3.2.8)
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for some ρ in [−∞,∞], in which case f is said to belong to RV (ρ).

Define

fl(x) ≡ va−1
l (x) and fr(x) ≡ va−1

r (x), x > 0. (3.2.9)

Then the following lemma holds.

Lemma 3.2.2 If fl (resp. fr) is regularly varying with parameter ρ in [0,∞], then

h(b) = fl(b) (resp. fr(b)) will satisfy condition (3.2.4) with g(y) = y−ρ.

In the important special case an = n, n = 0, 1, . . ., the inverse functions are

given by

a−1
l (x) ≡ dxe and a−1

r (x) ≡ bxc, x ≥ 0, (3.2.10)

with dxe (resp. bxc) denoting the ceiling (resp. floor) of x. In that case, if the

function v is regularly varying with parameter ρ, then h and g can immediately be

identified as

h(b) = vdbe (or vbbc) and g(y) = y−ρ, b, y > 0. (3.2.11)

3.2.1 The Large Deviations Principle

The sequence {Sn/an, n = 1, 2, . . .} is said to satisfy the Large Deviations Principle

under scaling vn if there exists a lower–semicontinuous function I : IR → [0,∞]

such that for every open set G,

− inf
x∈G

I(x) ≤ lim inf
n→∞

1

vn
lnP [Sn/an ∈ G] (3.2.12)

and for every closed set F ,

lim sup
n→∞

1

vn
lnP [Sn/an ∈ F ] ≤ − inf

x∈F
I(x). (3.2.13)
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We refer to (3.2.12) and (3.2.13) as the Large Deviations lower and upper bounds,

respectively. The rate function I is said to be good if for each r > 0, the level set

{x ∈ IR : I(x) ≤ r} is a compact subset of IR. Additional information on Large

Deviations can be found in [15].

The existence of (3.2.12), and for that matter of (3.2.13), is typically validated

through the Gärtner–Ellis Theorem [15, Thm. 2.3.6, p. 45]: In that context, for

each n = 1, 2, . . ., we introduce

Λn(θ) ≡
1

vn
lnE [exp (θSn)] , θ ∈ IR . (3.2.14)

The limit

Λ(θ) ≡ lim
n→∞

Λn(θ(n)), θ ∈ IR (3.2.15)

with θ(n) ≡ θvn/an, is assumed to exist (possibly as an extended real number).

We also define the Legendre–Fenchel transform of the mapping Λ : IR→ (−∞,∞]

by

Λ?(z) ≡ sup
θ∈IR

(θz − Λ(θ)) , z ∈ IR . (3.2.16)

A few relevant properties of mappings Λ and Λ? are stated next; the corre-

sponding proofs can be found in [15, Lemma 2.2.5, p. 27].

Lemma 3.2.3 Consider a stationary sequence {ξi, i = 1, 2, . . .} with partial sums

Sn =
n∑
i=1

ξi, n = 1, 2, . . .. Let Λ and Λ? be defined by identities (3.2.14)-(3.2.16).

The following properties then hold.

(i) Λ and Λ? are both convex;

(ii) (a) If Λ(θ) <∞ for some θ > 0 , then E [ξ1] <∞, and

Λ?(z) = sup
θ≥0

(θz − Λ(θ)) , z ≥ E [ξ1] (3.2.17)
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with Λ?(z) non–decreasing in the range z ≥ E [ξ1];

(b) If Λ(θ) <∞ for some θ < 0 , then E [ξ1] > −∞, and

Λ?(z) = sup
θ≤0

(θz − Λ(θ)) , z ≤ E [ξ1] (3.2.18)

with Λ?(z) non–increasing in the range z ≤ E [ξ1];

(iii) When E [ξ1] is finite,

inf
z∈IR

Λ?(z) = Λ? (E [ξ1]) = 0. (3.2.19)

When E [ξ1] < 0, the convexity of Λ, along with Jensen’s inequality and the

fact Λ(0) = 0, ensure that Λ only has non–negative roots, and that it subscribes

to one of the following patterns of behavior:

(F1) It has a double root at θ = 0;

(F2) It has a root at some finite θ′ > 0;

(F3) Λ(θ) =∞, θ > 0;

(F4) Λ(θ) < 0, 0 < θ < θ′, and Λ(θ) =∞, θ > θ′ for some finite θ′ > 0.

3.2.2 The Gärtner–Ellis Theorem

Under certain conditions, the process {Sn/an, n = 1, 2, . . .} satisfies the Large

Deviations Principle under scaling vn and with good rate function Λ? : IR→ [0,∞].

The Gärtner–Ellis Theorem, reproduced below from [15], provides one such set of

conditions.
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Theorem 3.2.1 The process {Sn/an, n = 1, 2, . . .} satisfies the Large Deviations

Principle under scaling vn and with good rate function Λ? : IR → [0,∞], if the

following conditions hold.

GE 1] The limit (3.2.15) exists as an extended real number;

GE 2] The origin belongs to the interior Do
Λ of the set DΛ = {θ ∈ IR : Λ(θ) <∞};

GE 3] Λ is essentially smooth, i.e.,

(i) Do
Λ is non-empty,

(ii) Λ is differentiable throughout Do
Λ,

(iii) Λ is steep, i.e.,

lim
i→∞

∣∣∣∣∂Λ(θi)

∂θi

∣∣∣∣ =∞ (3.2.20)

for every sequence {θi : θi ∈ Do
Λ, i = 1, 2, . . .} that converges to a

boundary point of DΛ.

We are now ready to derive results of the form (3.0.2) and (3.0.3), and we do

so forthwith.

3.3 The lower bound

The following theorem is essentially due to Duffield and O’Connell [16]; a proof is

included here for the sake of completeness:

Proposition 3.3.1 If the process {Sn/an, n = 1, 2, . . .} satisfies the Large Devi-

ations Principle with good rate function I : IR→ [0,∞] under scaling vn, then, for
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each y > 0 we have

lim inf
b→∞

1

h(b)
lnP [q∞ > b] ≥ −g(y) inf

x>y
I(x). (3.3.1)

Proof. Fix b > 0 and y > 0. From the definition of q∞, we have

P [q∞ > b] = P

[
sup

n=0,1,...
Sn > b

]
≥ P

[
Sa−1

l (b/y)

aa−1
l (b/y)

>
b

aa−1
l (b/y)

]

≥ P

[
Sa−1

l (b/y)

aa−1
l (b/y)

> y

]
,

where we have employed the second inequality in (3.2.3) with x = b/y. Conse-

quently

1

h(b)
lnP [q∞ > b] ≥

va−1
l (b/y)

h(b)
·

1

va−1
l (b/y)

lnP

[
Sa−1

l (b/y)

aa−1
l (b/y)

> y

]
, (3.3.2)

and letting b go to infinity in this last inequality, we readily get (3.3.1) from (3.2.4)

and the lower bound (3.2.12) (with G = (−∞, y)).

This is essentially Theorem 2.1 of [16], and shows the local nature of the lower

bound. As the best lower bound is the largest, we can immediately sharpen (3.3.1)

into the lower bound (3.0.2) as stated in the following Proposition.

Proposition 3.3.2 Under the assumptions of Proposition 3.3.1, we have the lower

bound (3.0.2) with

γ? ≡ inf
y>0

(
g(y) inf

x>y
I(x)

)
. (3.3.3)
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The expression (3.3.3) simplifies when the Large Deviations Principle for the

process {Sn/an, n = 1, 2, . . .} holds with a good rate function I : IR → [0,∞]

which is convex. Indeed, the relation

inf
x∈IR

I(x) = I(E [ξ1]) (3.3.4)

follows readily from the goodness of I and the fact that lim
n→∞

n−1Sn = E [ξ1] < 0

a.s. under the ergodic assumption. However, by convexity we have I increasing

(resp. decreasing) on (E [ξ1] ,∞) (resp. on (−∞,E [ξ1]), and the conclusion

inf
x>y

I(x) = I(y+) (3.3.5)

holds for all y > 0. Thus (3.3.3) becomes

γ? = inf
y>0

g(y)I(y+) = inf
0<y<y?

g(y)I(y), (3.3.6)

for some 0 ≤ y? ≤ ∞. The non–degeneracy condition y? > 0 holds in most

applications.

For the special case when the Gärtner–Ellis Theorem applies, the rate function

I is given by the function Λ?, which, being convex, allows the following represen-

tation of the lower bound.

Proposition 3.3.3 If the process {Sn/an, n = 1, 2, . . .} satisfies the conditions of

the Gärtner–Ellis Theorem under scaling vn, then, we have the lower bound (3.0.2)

with

γ? = inf
y>0

g(y)Λ?(y). (3.3.7)

3.4 The upper bound

We now turn to the derivation of the companion upper bound (3.0.3). In [16], such

an upper bound, was derived under a set of conditions which, though reasonably
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general, do not apply in certain situations of interest to us. Furthermore, the proof

provided was not entirely accurate. Upon refining the arguments of [16], we have

established a similar asymptotic upper bound which we present in this section.

More recently, an alternative approach was given in [17]; however the expressions

obtained here being simpler in form, are rather more conveniently applied.

The discussion that follows is considerably more involved than that of the

lower bound as shown in the previous section. To simplify matters, we present

the derivation in three parts: In the first, we establish the basic asymptotic upper

bound; its various terms are then studied in greater details in Sections 3.4.2 and

3.4.3.

3.4.1 The basic upper bound

For each m = 1, 2, . . . and b > 0, we define the quantities

A(m, b) ≡ m max
n=1,...,m

P [Sn > b] (3.4.1)

and

B(m, b) ≡
∞∑

n=m+1

P [Sn > b] . (3.4.2)

From the representation (3.1.4) we readily see that

P [q∞ > b] = P

[
sup

n=0,1,...
Sn > b

]
≤ m max

n=1,...,m
P [Sn > b] +

∞∑
n=m+1

P [Sn > b]

= A(m, b) +B(m, b)

≤ 2 max
(
A(m, b), B(m, b)

)
. (3.4.3)
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For a fixed y > 0, we substitute m = a−1
r (b/y) in (3.4.3), thus obtaining

1

h(b)
lnP [q∞ > b] ≤

1

h(b)
ln
(
2 max

(
A(a−1

r (b/y), b), B(a−1
r (b/y), b)

))
.

Letting b go to infinity in the resulting inequality, we achieve the basic asymptotic

upper bound

lim sup
b→∞

1

h(b)
lnP [q∞ > b] ≤ max (α(y), β(y)) (3.4.4)

where we have used the notation

α(y) ≡ lim sup
b→∞

1

h(b)
lnA(a−1

r (b/y), b) (3.4.5)

and

β(y) ≡ lim sup
b→∞

1

h(b)
lnB(a−1

r (b/y), b). (3.4.6)

We conclude this section with a couple of assumptions required for further

analysis:

Assumption A1: For each θ in IR, the limit (3.2.15) exists (possibly as an ex-

tended real number) with

−∞ < inf
θ>0

Λ(θ) <∞;

Assumption A2: For some finite κ ≥ 0, we have

lim
n→∞

lnn

vn
= κ. (3.4.7)

If κ = 0, we further assume that the sequence {lnn/vn, n = 1, 2, . . .} is eventually

decreasing, i.e., there exists a finite integer N? such that

ln(n+ 1)

vn+1

≤
lnn

vn
, n ≥ N?.

We note that the case κ = 0 is equivalent to Hypothesis 2.2(iv) in [16].
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In the next two sections we develop upper bounds on each of the terms α(y)

and β(y) in terms of of quantities which are conveniently derived from the statistics

of {ξn, n = 1, 2, . . .}, and which can be easily related to the expressions for the

lower bound.

3.4.2 An upper bound on α(y)

Going back to (3.4.1) we note that

lnA(a−1
r (b/y), b) = ln a−1

r (b/y) + max
n=1,...,a−1

r (b/y)
lnP [Sn > b] (3.4.8)

for each b > 0 and y > 0.

Lemma 3.4.1 Under Assumption A2 we have

lim sup
b→∞

1

h(b)
ln a−1

r (b/y) = κg(y), y > 0. (3.4.9)

Proof. For each y > 0 we have

lim sup
b→∞

1

h(b)
ln a−1

r (b/y) = lim sup
b→∞

(
va−1

r (b/y)

h(b)
·

1

va−1
r (b/y)

ln a−1
r (b/y)

)
= lim

b→∞

va−1
r (b/y)

h(b)
· lim sup

b→∞

1

va−1
r (b/y)

ln a−1
r (b/y)

= g(y) lim
n→∞

lnn

vn

and the desired conclusion follows from Assumption A2.

For the second term of (3.4.8), fixing y > 0 and b > 0, we note that

max
n=1,...,a−1

r (b/y)
lnP [Sn > b] ≤ sup

x>y
lnP

[
Sa−1

r (b/x) > b
]
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= sup
x>y

lnP

[
Sa−1

r (b/x)

aa−1
r (b/x)

>
b

aa−1
r (b/x)

]

≤ sup
x>y

lnP

[
Sa−1

r (b/x)

aa−1
r (b/x)

> x

]

= sup
x>y

(
va−1

r (b/x) ·
1

va−1
r (b/x)

lnP

[
Sa−1

r (b/x)

aa−1
r (b/x)

> x

])
where the last inequality comes about through the first inequality in (3.2.3). It is

now easy to see for each y > 0, that

lim sup
b→∞

1

h(b)
max

n=1,...,a−1
r (b/y)

lnP [Sn > b]

≤ lim sup
b→∞

sup
x>y

va−1
r (b/x)

h(b)
·

1

va−1
r (b/x)

lnP

[
Sa−1

r (b/x)

aa−1
r (b/x)

> x

]

≤ lim sup
m→∞

sup
x>y

vm

h(amx)
·

1

vm
lnP

[
Sm

am
> x

]
,

where the last step follows on substituting m = a−1
r (b/x), through the inequality

(3.2.3) and monotone increasing nature of the function h.

At this stage, the authors of [16] argue that

lim sup
n→∞

sup
x>y

vn
h(anx)

·
1

vn
lnP

[
Sn
an

> x

]
≤ lim sup

n→∞
sup
x>y

vn
h(anx)

· (δ − inf
z>x

I(z)) (3.4.10)

for any δ > 0, if the process {Sn/an, n = 1, 2, . . .} satisfies a Large Deviations

Principle under scaling vn with good rate function I : IR → [0,∞]. It is our

contention that (3.4.10) may not be concluded directly via (3.2.13), as is implied

in [16]. Indeed, from (3.2.13) we know that for any δ > 0, there exists an integer

n? such that

1

vn
lnP

[
Sn

an
> x

]
≤ − inf

z>x
I(z) + δ, n > n?. (3.4.11)
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It is important to realize that n? = n?(x, δ). This dependence of n? on x pre-

cludes taking sup
x>y

on both sides of (3.4.11) to obtain (3.4.10). We overcome this

technicality through a slightly different approach.

Lemma 3.4.2 Assume A1. Then, for each y > 0 we have

lim sup
b→∞

1

h(b)
max

n=1,...,a−1
r (b/y)

lnP [Sn > b]

≤ − sup
θ>0

lim inf
n→∞

inf
x>y

(
vn

h(xan)
(θx− Λ(θ))

)
. (3.4.12)

Proof. Fix x > 0. For each θ > 0, the usual Chernoff bound argument gives

1

vn
lnP

[
Sn
an

> x

]
≤

1

vn
ln
(
E
[
eθvn

Sn
an

]
e−θxvn

)
= −θx+ Λn(θ), n = 1, 2, . . . (3.4.13)

Under Assumption A1, if Λ(θ) is finite, then for each δ > 0, there exists an integer

n? = n?(θ, δ) such that

Λ(θ)− δ ≤ Λn(θ) ≤ Λ(θ) + δ, n ≥ n?. (3.4.14)

Reporting this fact into the Chernoff bound (3.4.13), we get

1

vn
lnP

[
Sn

an
> x

]
≤ −θx+ Λ(θ) + δ, n ≥ n?.

Consequently, for y > 0 and n ≥ n?, we see that

sup
x>y

1

h(xan)
lnP

[
Sn

an
> x

]
≤ sup

x>y

vn

h(xan)
(δ − θx+ Λ(θ))

≤ sup
x>y

vn
h(xan)

δ − inf
x>y

vn
h(xan)

(θx− Λ(θ))

≤
vn

h(yan)
δ − inf

x>y

vn

h(xan)
(θx− Λ(θ)). (3.4.15)
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It is now apparent via Lemma 3.2.1 that

lim sup
n→∞

sup
x>y

1

h(xan)
lnP

[
Sn
an

> x

]
≤ g(y)δ − lim inf

n→∞
inf
x>y

(
vn

h(xan)
(θx− Λ(θ))

)
,

whence

lim sup
n→∞

sup
x>y

1

h(xan)
lnP

[
Sn

an
> x

]
≤ − lim inf

n→∞
inf
x>y

(
vn

h(xan)
(θx− Λ(θ))

)
because δ can be made arbitrarily small. The least upper bound being the sharpest,

we readily conclude (3.4.12).

Combining Lemmas 3.4.1 and 3.4.2 we conclude from (3.4.8) to the following

upper bound on α(y).

Proposition 3.4.1 Under Assumptions A1 and A2 we have α(y) ≤ αU(y) for

each y > 0 with

αU(y) ≡ g(y)κ− sup
θ>0

lim inf
n→∞

inf
x>y

(
vn

h(xan)
(θx− Λ(θ))

)
. (3.4.16)

3.4.3 An upper bound on β(y)

As in the proof of Lemma 3.4.2, we begin with a simple Chernoff bound argument.

Fix b > 0 and θ > 0. This time, we have

P [Sn > b] ≤ e−θ
vn
an
bE
[
eθ

vn
an
Sn
]
≤ evnΛn(θ), n = 1, 2, . . . . (3.4.17)
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Under Assumption A1, if Λ(θ) is finite, then for each δ > 0, there exists a finite

integer n? = n?(θ, δ) such that (3.4.14) holds. Hence, for each y > 0, it follows

from (3.4.2) that

β(y) = lim sup
b→∞

1

h(b)
ln

 ∞∑
n=a−1

r (b/y)+1

P [Sn > b]


≤ lim sup

b→∞

1

h(b)
ln

 ∞∑
n=a−1

r (b/y)+1

e(Λ(θ)+δ)vn


= lim sup

b→∞

va−1
r (b/y)

h(b)

1

va−1
r (b/y)

· ln

 ∞∑
n=a−1

r (b/y)+1

e(Λ(θ)+δ)vn


= g(y) lim sup

b→∞

1

va−1
r (b/y)

ln

 ∞∑
n=a−1

r (b/y)+1

e(Λ(θ)+δ)vn


= g(y) lim sup

m→∞

1

vm
ln

( ∑
n=m+1

e(Λ(θ)+δ)vn

)
. (3.4.18)

Setting

L(γ) ≡ lim sup
m→∞

1

vm
ln

(
∞∑

n=m+1

e−γvn

)
, γ ∈ IR (3.4.19)

we can rephrase (3.4.18) as

β(y) ≤ g(y)L(−(Λ(θ) + δ)), y > 0. (3.4.20)

The remainder of the discussion hinges on the following expression for (3.4.19)

which shows that in (3.4.20) we need only be concerned with the situation Λ(θ) +

δ < 0:

Lemma 3.4.3 Under Assumption A2, we have

L(γ) =

 κ− γ if γ > κ

∞ if γ < κ.
(3.4.21)
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When κ = 0, (3.4.21) reads L(γ) = −γ for all γ > 0. When κ > 0, the boundary

case γ = κ depends on the finer structure of the sequence {vn/ lnn, n = 1, 2, . . .}.

The proof of Lemma 3.4.3 is given in Appendix B.1.

Proposition 3.4.2 Assumptions A1 and A2 are in force. If Λ?(0) > κ, then for

each y > 0 we have β(y) ≤ βU(y), with

βU(y) ≡ g(y) (κ− Λ?(0)) . (3.4.22)

If Λ?(0) < κ, then βU (y) =∞, yielding a trivial bound.

For κ = 0, (3.4.22) becomes

βU(y) = −g(y)Λ?(0), y > 0. (3.4.23)

Proof. We first note that

−Λ?(0) = inf
θ∈IR

Λ(θ) = inf
θ>0

Λ(θ), (3.4.24)

where the last equality made use of the fact that E [ξ1] < 0 [15].

Lemma 3.4.3 yields

L(−(Λ(θ) + δ)) =

 κ+ (Λ(θ) + δ) if − (Λ(θ) + δ) > κ

∞ if − (Λ(θ) + δ) < κ.
(3.4.25)

Consequently, for each y > 0, we see from (3.4.20) that

β(y) ≤ g(y) inf
δ>0

(inf{κ+ Λ(θ) + δ : θ ∈ Θ(δ)}) (3.4.26)

where

Θ(δ) ≡ {θ > 0 : κ+ Λ(θ) + δ < 0}, δ > 0. (3.4.27)
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In view of (3.4.24), if Λ?(0) ≤ κ, then the sets Θ(δ) are all empty and the right

hand–side of (3.4.26) is ∞, justifying the comment that the bound so obtained

is vacuous. When Λ?(0) > κ, Θ(δ) is not empty for δ in some non–degenerate

interval (0, δ?). Therefore, (3.4.26) becomes

β(y) ≤ g(y) inf
0<δ<δ?

(
inf
θ>0

(κ+ Λ(θ) + δ)

)
, y > 0 (3.4.28)

and the conclusion of Proposition 3.4.2 follows.

3.4.4 The upper bound

We are now ready to combine Propositions 3.4.1 and 3.4.2.

Proposition 3.4.3 Assuming conditions A1 and A2, we have

lim sup
b→∞

1

h(b)
lnP [q∞ > b] ≤ −γ?(y), (3.4.29)

for each y > 0, with

γ?(y) = min

(
sup
θ>0

lim inf
n→∞

inf
x>y

(
vn

h(xan)
(θx− Λ(θ))

)
,Λ?(0)g(y)

)
− κg(y). (3.4.30)

Proof. The proof follows from (3.4.4) and from Propositions 3.4.1 and 3.4.2 with

γ?(y) = max (α(y), β(y)) .
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As the least upper bound is the sharpest, under the assumptions of Proposition

3.4.3 we immediately get (3.0.3) with

γ? = − sup
y>0

γ?(y). (3.4.31)

In many situations of interest, the function h appearing in (3.2.4) satisfies the

following condition:

Assumption A3: The mapping x→ h(x)/x is eventually non–increasing on

(0,∞), i.e., there exists an x? > 0 such that

h(x)

x
≤
h(y)

y
, x ≥ y ≥ x?. (3.4.32)

In these cases, the upper bound given by (3.4.30) may be weakened, as indicated

by the the following Proposition.

Proposition 3.4.4 Assuming conditions A1, A2 and A3 are in force, we have

lim sup
b→∞

1

h(b)
lnP [q∞ > b] ≤ −g(y)

(
min

(
θ0y,Λ

?(0)
)
− κ
)
, (3.4.33)

for each y > 0, with

θ0 = sup{θ > 0 : Λ(θ) < 0}. (3.4.34)

Proof. Fix y > 0. Then, for every θ > 0, we have

inf
x>y

vn

h(xan)

(
θx− Λ(θ)

)
=

vn
an

inf
x>y

θxan − Λ(θ)an
h(xan)

≥ θ
vn

an
inf
x>y

xan

h(xan)
+ vn inf

x>y

−Λ(θ)

h(xan)
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= θ
vn

an
inf
x>y

xan

h(xan)
+ vn


−Λ(θ)
h(xan)

∣∣∣
x=y

if Λ(θ) ≥ 0

0 if Λ(θ) ≤ 0

(3.4.35)

= θ
vn

an
inf
x>y

xan

h(xan)
− (Λ(θ))+ vn

h(yan)
, (3.4.36)

where (3.4.35) follows through the monotone increasing nature of the mapping

h : (0,∞)→ IR+. Applying Assumption A3, we may rewrite (3.4.36) with y > x?

(with x? appearing in (3.4.32)) as

inf
x>y

vn
h(xan)

(
θx− Λ(θ)

)
≥ θ

vn
an

yan
h(yan)

− (Λ(θ))+ vn
h(yan)

=
(
θy − (Λ(θ))+

) vn

h(yan)
,

whence it follows that

lim inf
n→∞

inf
x>y

vn
h(xan)

(
θx− Λ(θ)

)
≥ lim inf

n→∞

(
θy − (Λ(θ))+

) vn
h(yan)

=
(
θy − (Λ(θ))+

)
lim inf
n→∞

vn
h(yan)

if θy ≥ (Λ(θ))+

lim sup
n→∞

vn
h(yan)

if θy ≤ (Λ(θ))+

=
(
θy − (Λ(θ))+

)
g(y)

via Lemma 3.2.1.

The desired result now follows through Proposition 3.4.3 with

γ?(y) ≥ g(y)

(
min

(
sup
θ>0

(
θy − (Λ(θ))+

)
,Λ?(0)

)
− κ

)
, (3.4.37)

and through the fact that

sup
θ>0

(
θy − (Λ(θ))+

)
= max

(
sup

θ>0,Λ(θ)<0

θy, sup
θ>0,Λ(θ)≥0

(θy − Λ(θ))

)

= max

(
θ0y, sup

θ>0,Λ(θ)≥0

(θy − Λ(θ))

)
≥ θ0y,
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where θ0 is given by (3.4.34).

3.5 Special Cases

Under additional conditions the bounds can be still further modified. We address

two special cases: In the first case we have g(y) = 1, y > 0, suggesting a slowly-

varying scaling function vn, while the second is the familiar and well-researched

case vn = an = n. We assume A3 holds in both cases.

Case 1: A3 holds; g(y) = 1, y > 0. Applying Proposition 3.4.4, and maximizing

over y > 0 in order to achieve the smallest upper bound, we have

lim sup
b→∞

1

h(b)
lnP [q∞ > b] ≤ κ− sup

y>0

(
min

(
θ0y,Λ

?(0)
))

,

with θ0 given by (3.4.34). The function min
(
θ0y,Λ

?(0)
)

being non–decreasing in

y, we easily conclude to the bound

lim sup
b→∞

1

h(b)
lnP [q∞ > b] ≤ κ− Λ?(0). (3.5.38)

Further, if the conditions of the Gärtner–Ellis Theorem hold, then by Proposi-

tion 3.3.3, we have the lower bound

γ? = inf
y>0

Λ?(y) = Λ?(0). (3.5.39)

Case 2: vn = an = n, n = 1, 2, . . .. This condition automatically suggests

the selection h(b) = b, b > 0, whereupon (3.2.4) yields g(y) =
1

y
, y > 0. Both

Assumptions A2 and A3 hold, and κ = 0. Applying Proposition 3.4.4, we have

the upper bound

γ?(y) ≥
1

y
min

(
θ0y,Λ

?(0)
)
, y > 0 (3.5.40)

60



where θ0 is given by (3.4.34). Maximizing over y > 0 in order to achieve the

smallest upper bound yields

γ? = sup
y>0

γ?(y) ≥ min

{
θ0, sup

y>0

Λ?(0)

y

}
= θ0. (3.5.41)

The corresponding lower bound may also be derived under certain conditions.

By Proposition 3.3.3, we know that (3.0.2) holds with

γ? = inf
y>0

Λ?(y)

y
, (3.5.42)

assuming that GE 1-3 of the Gärtner–Ellis Theorem hold. We already know via

(3.5.41) that

γ? ≥ γ? ≥ θ0. (3.5.43)

From the remarks following Lemma 3.2.3, we know that Λ exhibits one of four

possible forms of behavior, F1 - F4. Of these, F3 is ruled out by assumption GE

2 of the Gärtner–Ellis Theorem.

When Λ obeys F4, Λ(θ) =∞, θ′ < θ, and we have

sup
θ>0

(
θ −

Λ(θ)

y

)
= max

(
sup

0<θ≤θ′

(
θ −

Λ(θ)

y

)
, sup
θ′<θ

(
θ −

Λ(θ)

y

))
= sup

0<θ≤θ′

(
θ −

Λ(θ)

y

)
,

in which case (3.5.42) easily simplifies as

γ? = inf
y>0

sup
θ>0

(
θ −

Λ(θ)

y

)
= inf

y>0
sup

0<θ≤θ′

(
θ −

Λ(θ)

y

)
.

As Λ(θ) < 0 in the range 0 < θ ≤ θ′, the term sup
0<θ≤θ′

(
θ −

Λ(θ)

y

)
is decreasing in

y, whence,

γ? = lim
y→∞

sup
0<θ≤θ′

(
θ −

Λ(θ)

y

)
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= sup
0<θ≤θ′

θ

= θ′, (3.5.44)

where the second inequality follows through the uniform convergence of the func-

tion 1/y to 0, as y tends to infinity. Comparing F4 with (3.4.34), we immediately

conclude that θ0 = θ′ in this case, therefore implying that γ? = θ0. Referring to

(3.5.43) we realize in fact that γ? = γ? = θ0.

In case F1, we know via (3.4.34) that θ0 = 0. Λ(θ) being positive for all θ > 0,

the function sup
0<θ<θ′

(
θ −

Λ(θ)

y

)
is now increasing in y. Therefore, γ? = 0 trivially,

and via (3.5.43) we arrive at the same result as before: γ? = γ? = θ0.

We now only need investigate the case F2, where the equation Λ(θ) = 0 has

roots 0 and θ0. By (3.5.42), we know that

γ? ≤ sup
θ>0

(
θ −

Λ(θ)

y

)
for all values of y > 0.

Consider the particular selection y = y0, where y0 is the slope of the function

Λ(θ) at θ = θ0 and is given by

y0 =
dΛ(θ)

dθ

∣∣∣∣
θ=θ0

. (3.5.45)

Under assumption GE 3 (ii), the function Λ is differentiable wherever it takes

finite values.

By the convexity of Λ and by (3.5.45), we know that

arg sup
θ>0

(
θ −

Λ(θ)

y0

)
= θ0,

and

sup
θ>0

(
θ −

Λ(θ)

y0

)
= θ0 −

Λ(θ0)

y0

= θ0, (3.5.46)
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whereby we conclude that γ? ≤ θ0. A quick comparison with (3.5.43) again yields

the same final result as before, i.e., γ? = γ? = θ0.

In other words, when assumptions A1 and GE 1-3 are satisfied for selections

vn = an = n, n = 1, 2, . . ., we have

lim
b→∞

1

b
lnP [q∞ > b] = −θ0 (3.5.47)

where θ0 is given by (3.4.34), and is identical to the expression derived by Glynn

and Whitt in [27].
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Chapter 4

Evaluation of Λ(θ), (θ ∈ IR) for the M |G|∞

process

The previous chapter addressed the issue of buffer–sizing at a switch in a network.

Having introduced the M |G|∞ process as a suitable model for network traffic, the

next logical step consists in applying the results derived in Chapter 3, to estimate

quality of service parameters such as cell–loss and buffer overflow probabilities, in

a network supporting M |G|∞ traffic. In this and the following chapters we seek

results of the type (3.0.2) and (3.0.3) when the traffic input {bt, t = 0, 1, . . .} into

the multiplexer is an M |G|∞ input process.

The log–moment generating function Λ(θ) being central to our analysis, we

focus exclusively on its computation in this chapter. To do so, we identify the

scaling functions v and a, so that the limit (3.2.15) exists (possibly as an extended

real number) for every θ in IR. Of course, if Λ(θ) = ∞ for all θ > 0, then the

Legendre–Fenchel transform Λ? of Λ vanishes on the entire positive half–line and

(3.3.6) and (3.4.29) yield vacuous bounds on the probabilities of interest. To guard

against such an eventuality, we require Λ(θ) <∞ for some θ > 0, as per assumption

A1 in the previous chapter.
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Finally we note that the discussion is carried out under the premise that the

limits lim
n→∞

vn

n
and lim

n→∞

an

n
exist; this is a very mild assumption which holds in

most situations of interest, in fact in all situations known to the author.

4.1 Evaluation of Λ(θ), (θ ∈ IR)

To state the results more conveniently, we fix n = 1, 2, . . . and set

Λb,n (θ) ≡
1

vn
lnE

[
exp

(
θSbn
)]
, θ ∈ IR, (4.1.1)

where Sbn =
n∑
i=1

bi. Now, using definition (3.1.3), with ξi = bi − c, we rewrite

(3.2.14) as

Λn (θ) =
1

vn
lnE

[
exp

(
θ(Sbn − cn)

)]
= Λb,n (θ)−

θcn

vn
, θ ∈ IR,

whence it follows via (3.2.15) that

Λ(θ) ≡ lim
n→∞

Λn(θ(n))

= Λb,n (θ(n))− θ(n)
cn

vn

= Λb,n (θ(n))− θc
n

an
, θ ∈ IR, (4.1.2)

where as before, we have used the notation θ(n) = θvn/an.

Taking into consideration the fact that the output rate c of the multiplexer

would certainly influence the queue–size, we can rule out selections of a that yield

lim
n→∞

n

an
= 0 or ∞. In other words, meaningful bounds only result when

lim
n→∞

n

an
= α, 0 < α <∞, (4.1.3)
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in which case, if the limit

Λb (θ) ≡ lim
n→∞

Λb,n (θ(n)) , θ ∈ IR (4.1.4)

exists, so does (4.1.2) with

Λ(θ) = Λb(θ)− αcθ, θ ∈ IR (4.1.5)

and it suffices to concentrate on finding (4.1.4). As we will see later in Section

4.6, so long as (4.1.3) holds, the particular form of the function a does not alter

the essence of our result, nor does the actual value taken by α. We therefore

proceed for the remainder of this thesis, with the convenient assumption that

an = n, n = 1, 2, . . ., so that α = 1, and θ(n) = θvn/n.

Under this selection, we can already predict via Jensen’s inequality and Propo-

sition 2.3.2 that

Λb,n(θ(n)) ≥ λE [σ] θ, θ ∈ IR

for each n = 1, 2, . . ., so that Λb(θ) > −∞ (though possibly∞) when it exists. The

mapping θ→ Λb(θ) is non–decreasing and convex, so that {θ ∈ IR : Λb(θ) =∞} is

an interval of the form (θ?,∞) or [θ?,∞) for some θ? in IR∪{∞}.

Further, if Λb(θ) < ∞ for some θ > 0, then, by (3.2.16) and by Lemma 3.2.3

(ii) (a), we have

Λ?(x) = sup
θ∈IR

(θx− Λ(θ))

= sup
θ>0

(θx− Λ(θ))

= sup
θ>0

(θ(x+ c)− Λb(θ)) (4.1.6)

for every x > E [ξ1], where ξ1 = b1 − c as specified shortly after (4.1.1). However,

E [ξ1] = λE [σ] − c = rin − c < 0 by the stability requirement, and we conclude

that for any x > 0, Λ?(x) is given by (4.1.6), as long as Λb(θ) <∞ for some θ > 0.
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4.2 Evaluation of Λb,n(θ) (n = 1, 2, . . ., θ ∈ IR)

As per the notation introduced in Section 2.2.1, for a sequence Tn = {ti, i =

1, 2, . . . , n} of finite, non-negative, non–decreasing integers, let

L(Tn, Qn) = lnE

[
exp

(
n∑
i=1

θibti

)]
<∞ (4.2.1)

where Qn = {θi, i = 1, 2, . . . , n} is a sequence of real–valued numbers. (This is

essentially (2.1.7) reproduced here for convenience.)

Consider the special case Hn = (1, 2, . . . , n) and Q̃n = {θ, . . . , θ} for some θ in

IR, so that (4.2.1) now becomes

L(Hn, Q̃n) = lnE

[
exp

(
θ

n∑
i=1

bi

)]
.

Comparison with (4.1.1) easily gives

L(Hn, Q̃n) = vnΛb,n (θ) , θ ∈ IR (4.2.2)

for each n = 1, 2, . . ..

For the results of the Chapter 3 to be applicable, we restrict our attention to

the stationary and ergodic version of the busy server process {bt, t = 0, 1, . . .}.

The form of Λb,n(θ) (θ in IR, n = 1, 2, . . .) is then given by Theorem 4.2.1.

Theorem 4.2.1 Fix θ in IR. For each n = 1, 2, . . ., we have

Λb,n (θ) = λE [σ]
(
eθ − 1

) n
vn

(
1 + (1− e−θ)∆(n, θ)

)
(4.2.3)

where

∆(n, θ) =
1

n

n∑
r=1

(n− r)eθrP [σ̂ > r] . (4.2.4)
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Theorem 4.2.1 follows directly from Lemma 4.2.1 below, which derives an ex-

pression for L(Hn, Q̃n) in the special case Hn = (1, 2, . . . , n) and Q̃n = {θ, . . . , θ}

for some θ in IR. The proof is simple and has been included in Appendix C.1.

Lemma 4.2.1 For each n = 1, 2, . . ., and θ in IR, we have

L(Hn, Q̃n) = λE [σ] (eθ − 1)n
(
1 + (1− e−θ)∆(n, θ)

)
(4.2.5)

with ∆(n, θ) defined by (4.2.4).

The expression ∆ (n, θ), when coaxed into a different form, gives rise to an al-

ternate formulation for Λb,n(θ) (θ in IR, n = 1, 2, . . .), which proves both insightful

and convenient for further analysis. This expression is given in Theorem 4.2.2,

with the details of the proof available in Appendix C.2.

Theorem 4.2.2 Fix θ in IR. For each n = 1, 2, . . ., we have

Λb,n (θ) =
λ

vn
(Dn(σ, θ)− 2E [min(n, σ)]) ,

where

Dn(σ, θ) ≡ E
[
(n− σ)+

(
eθσ − 1

)]
+

(
eθ + 1

eθ − 1

)
E
[
eθmin(n,σ) − 1

]
+ E [σ]P [σ̂ > n]

(
eθn − 1

)
. (4.2.6)

With definition (4.1.4) in mind, for each θ in IR, Lemma 4.2.1 gives

Λb(θ) = λE [σ] lim
n→∞

(
eθ

vn
n − 1

) n

vn

(
1 +

(
1− e−θ

vn
n

)
∆
(
n, θ

vn
n

))
, (4.2.7)

while Theorem 4.2.2 yields

Λb (θ) = λ lim
n→∞

1

vn
Dn
(
σ, θ

vn

n

)
, (4.2.8)
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provided these limits exist, since for any scaling v, we have

0 ≤ lim
n→∞

1

vn
E [min(n, σ)] ≤ lim

n→∞

1

vn
E [σ] = 0

by the finiteness of E [σ].

As we shall see in the remainder of this chapter, both the representations (4.2.7)

and (4.2.8) prove useful in determining the scaling function v.

4.3 Selection of the sequence vn, (n = 1, 2, . . .)

It is quite obvious that the function θ → Λb(θ) critically depends on the selection

of the pair (a, v). The concluding portion of Section 4.1 having already narrowed

down the selection of a to linear sequences, we now focus on the challenging task

of identifying the scaling v.

4.3.1 Preliminary Results

A glance at (4.2.7) or (4.2.8) suggests that the limiting value of the ratio
vn
n

as n

goes to infinity might have a substantial effect on the form of Λb(θ), θ in IR. This

effect is demonstrated by Theorem 4.3.1, which indicates at the very outset the

ineligibility of scalings v with lim
n→∞

vn
n

=∞.

Theorem 4.3.1 If the scaling sequence {vn, n = 1, 2, . . .} is such that lim
n→∞

vn
n

=

∞, then we have

Λb(θ) =

 0, θ ≤ 0

∞, θ > 0.
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Proof. Fix θ in IR: By the definition (4.2.4), we have

∆(n, θ) =
n∑
r=1

(
1−

r

n

)
erθP [σ̂ > r] ≥ 0.

Recognizing that 1− e−θ > 0 for θ > 0, we use (4.2.7) to provide the bound

Λb(θ) ≥ λE [σ] lim
n→∞

(
eθ

vn
n − 1
vn
n

)
= λE [σ] lim

n→∞

eθ
vn
n − 1
vn
n

= ∞.

When θ < 0,

0 ≤ ∆(n, θ) =
n∑
r=1

(
1−

r

n

)
erθP [σ̂ > r]

≤
n∑
r=1

erθ

≤
∞∑
r=1

erθ

=
eθ

1− eθ
,

and

0 ≥
(
1− e−θ

)
∆(n, θ) ≥

(
1− e−θ

) eθ

1− eθ
,

implying

0 ≤ 1 +
(
1− e−θ

)
∆(n, θ) ≤ 1.

Hence referring to (4.2.7) with θ < 0, we have

λE [σ] lim
n→∞

n

vn

(
eθ

vn
n − 1

)
≤ Λb(θ) ≤ 0,
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leading inevitably to the conclusion that Λb(θ) = 0 when θ ≤ 0.

Due to the linear nature of the scaling function a, Theorem 4.3.1 clearly in-

dicates that only linear and sub–linear forms may be considered in selecting v,

irrespective of the form of distribution G.

Next, we provide the first clue that the dependence of v on the distribution G

occurs through the function v?, in the form of Theorem 4.3.2. Acting in a capacity

similar to Theorem 4.3.1, it further streamlines the set of acceptable sequences by

dismissing those that asymptotically increase faster than v?.

Theorem 4.3.2 Consider a scaling sequence {vn, n = 1, 2, . . .} such that

lim
n→∞

v?n
vn

= K (4.3.1)

for some finite constant K ≥ 0. We then have

lim
n→∞

Λb,n(θ) =∞, θ > K. (4.3.2)

Proof. Fix θ > 0. From (4.2.6) we have

Dn(σ, θ) ≥
(
eθn − 1

)
E [σ]P [σ̂ > n]

=
(
eθn − 1

)
E [σ] e−v

?
n , n = 1, 2, . . . ,

where the final step follows by the definition (2.3.1). Applying the previous in-

equality to (4.2.8), we get

Λb(θ) ≥ λE [σ] lim
n→∞

e−v
?
n

vn

(
enθ

vn
n − 1

)
= λE [σ] lim

n→∞

e−v
?
n+θvn

vn
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= λE [σ] lim
n→∞

e
vn

(
θ−

v?n
vn

)
vn

= λE [σ] lim
n→∞

evn(θ−K)

vn

= ∞, θ > K.

Summarizing the ground covered so far, we can state definitely, that the scaling

v may at most be linear in case v? is asymptotically linear or super–linear, but can

only be sub–linear when v? is asymptotically sub–linear. In other words, it seems

reasonable to expect that the selection of v relies on the limiting value of
v?n
n

. With

this in mind, we make the reasonable assumption that the limit

lim
n→∞

v?n
n

= R, 0 ≤ R ≤ ∞ (4.3.3)

exists, and identify three distinct cases as shown in Table 4.1.

Category lim
n→∞

v?n
n

= R Tail of G v? v

I R =∞ super–exponential super–linear linear/sub–linear

II 0 < R <∞ exponential linear linear/sub–linear

III R = 0 sub–exponential sub–linear sub–linear

Table 4.1: Three cases defined by the tail of distribution G

Having laid the necessary foundation, we now proceed to study Λb(θ) in each

of the three cases, under both linear and sub–linear scalings.
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4.4 The linear scaling

We have already seen via Theorem 4.3.2 that a linear scaling v is not suitable

when v? is sub–linear, i.e., when G falls under category III; we now investigate its

eligibility for cases I and II.

To assist our calculations, we begin with the simplifying assumption that vn =

n, n = 0, 1, . . .. In this case, Theorem 4.4.1 gives the form of Λb(θ) for cases I, II

and III.

Theorem 4.4.1 Fix θ 6= R, in IR. For the scaling sequence vn = n, n = 0, 1, . . .,

we always have

Λb(θ) =

 λE
[
eθσ − 1

]
θ < R

∞ θ > R,
(4.4.1)

for R ≥ 0.

Proof. Fix θ in IR. For the particular scaling sequence vn = n, n = 0, 1, . . ., the

relations (4.2.6) and (4.2.8) yield

Λb(θ) = lim
n→∞

λ

n
Dn
(
σ, θ

vn
n

)
= lim

n→∞

λ

n
Dn (σ, θ)

= λ

(
L1(θ) +

(
eθ + 1

eθ − 1

)
L2(θ) + E [σ]L3(θ)

)
,

where

L1(θ) ≡ lim
n→∞

1

n
E
[
(n− σ)+

(
eθσ − 1

)]
,

L2(θ) ≡ lim
n→∞

1

n
E
[
eθmin(n,σ) − 1

]
,

73



and

L3(θ) ≡ lim
n→∞

1

n
P [σ̂ > n]

(
eθn − 1

)
.

We have already evaluated L3(θ) in the course of proving Theorem 4.3.2; to reit-

erate,

L3(θ) = lim
n→∞

e−v
?
n

n

(
eθn − 1

)
= lim

n→∞

eθn−v
?
n

n

= lim
n→∞

en(θ−R+o(1))

n

=

 ∞ θ > R

0 θ < R.
(4.4.2)

The value taken by L3(θ) when θ = R, cannot be ascertained without additional

information about the behaviour of the sequence v?; we postpone this discussion

for later.

As L1(θ), L2(θ), and L3(θ) are non–negative for θ ≥ 0, and hence for θ > R,

(4.4.2) already implies

Λb(θ) = ∞, θ > R.

We therefore restrict our attention to L1(θ) and L2(θ) in the region θ < R.

For θ > 0, monotone convergence ensures that

L1(θ) = lim
n→∞

E

[(
1−

σ

n

)+ (
eθσ − 1

)]
= E

[
eθσ − 1

]
.

Since eθσ−1 = −(1−eθσ), the same argument can be applied when θ ≤ 0, yielding

the same result.
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For the case θ > 0, observe that the limit

L2(θ) ≤ lim
n→∞

1

n
E
[
eθσ − 1

]
= 0,

as long as E
[
eθσ
]
< ∞. When E

[
eθσ
]

= ∞, the limit L1(θ) is infinite in any

case, rendering the value taken by L2(θ) irrelevant. When θ < 0, L2(θ) = 0, since

0 < eθmin(σ,n) < 1.

Finally, recombining the limits L1(θ), L2(θ), and L3(θ), we get the desired

result.

This last result is compatible with Theorem 4.3.2 for the cases II and III, since

K = R with vn = n, n = 0, 1, . . ..

Theorem 4.4.1 suggests the linear scaling as suitable in those situations when

R > 0, and E
[
eθσ
]
< ∞, 0 < θ < R. Naturally, it would be advantageous to

study these situations in greater detail; we address the issue promptly in the next

sub–section.

4.4.1 Finiteness of exponential moments

We shall find it useful to relate the exponential moments of σ to those of σ̂, and

to characterize their finiteness in terms of the properties of the sequence {v?n, n =

1, 2, . . .}. To do so, we define

Σ(θ) ≡
∞∑
r=1

exp

(
r(θ −

v?r
r

)

)
, θ ∈ IR . (4.4.3)

Cauchy’s convergence criterion readily yields the following fact used in several

places.

Lemma 4.4.1 Assume (4.3.3) with R > 0, possibly infinite. Then, the quantity

Σ(θ) is finite (resp. infinite) if θ < R (resp. θ > R).
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The main result of this section is contained in the following

Proposition 4.4.1 For each θ in IR, the quantities E
[
eθσ̂
]
, E
[
eθσ
]

and Σ(θ) are

all finite (resp. infinite) simultaneously.

The proof of this result passes by the next two technical lemmas.

Lemma 4.4.2 For each θ in IR, the relation

E
[
eθσ̂
]

=
1

E [σ]

1

1− e−θ
E
[
eθσ − 1

]
(4.4.4)

holds.

We obviously have E
[
eθσ̂
]

= 1 for θ = 0, a fact which is easily seen to be

consistent with (4.4.4) by applying L’Hospital’s rule on its right hand–side.

Proof. Fix θ 6= 0 in IR. We see that

E
[
eθσ̂
]

=
∞∑
r=1

ĝre
rθ

=
1

E [σ]

∞∑
r=1

P [σ ≥ r] erθ

=
1

E [σ]

∞∑
r=1

erθ
∞∑
s=r

gs

=
1

E [σ]

∞∑
s=1

gs

s∑
r=1

erθ

=
1

E [σ]

eθ

eθ − 1

∞∑
s=1

gs(e
sθ − 1)

and the conclusion (4.4.4) follows.
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Lemma 4.4.3 For each θ in IR, we have the relation

Σ(θ) =

(
1

1− e−θ

)(
E
[
eθσ − 1

]
E [σ] (eθ − 1)

− 1

)
. (4.4.5)

When θ = 0, the arguments leading to (4.4.5) can be modified to yield

Σ(θ) =
∞∑
h=1

P [σ̂ > h] =
1

2
E [σ(σ − 1)] . (4.4.6)

This last expression is easily seen to coincide with (4.4.5) via L’Hospital’s rule.

Proof. Fix θ 6= 0 in IR, and note from (C.2.1) that

Σ(θ) =
∞∑
r=1

erθP [σ̂ > r]

=
1

E [σ]

∞∑
r=1

erθE
[
(σ − r)+

]
. (4.4.7)

Next,

∞∑
r=1

erθE
[
(σ − r)+

]
=

∞∑
r=1

erθ
∞∑
j=r

(j − r)gj

=
∞∑
j=1

gj

j∑
r=1

(j − r)erθ

=
∞∑
j=1

gje
jθ

j−1∑
h=0

he−hθ, (4.4.8)

by the substitution h = j − r.

Using the standard identity

∞∑
r=a

re−θr =
e−aθ

1− e−θ

(
a+

1

eθ − 1

)
, a = 0, 1, . . .

we evaluate

j−1∑
h=0

he−hθ =
∞∑
h=0

he−hθ −
∞∑
h=j

he−hθ

=
1

1− e−θ

(
1− e−jθ

eθ − 1
− je−jθ

)
, j = 1, 2, . . . . (4.4.9)
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Reporting (4.4.9) into (4.4.8) gives

∞∑
r=1

erθE
[
(σ − r)+

]
=

1

1− e−θ

∞∑
j=1

gj

(
ejθ − 1

eθ − 1
− j

)

=
1

1− e−θ

(
E
[
eσθ − 1

]
eθ − 1

− E [σ]

)
,

and the result emerges through a simple comparison with (4.4.7).

When R > 0, Proposition 4.4.1 and Lemma 4.4.1 readily imply E
[
eθσ
]

finite

(resp. infinite) if θ < R (resp. θ > R), allowing Theorem 4.4.1 to be rephrased as

follows:

Theorem 4.4.2 Fix θ 6= Rin IR. For the scaling sequence vn = n, n = 0, 1, . . .,

we have

Λb(θ) = λE
[
eθσ − 1

]
.

with E
[
eθσ
]

finite (resp. infinite) if θ < R (resp. R < θ).

The finiteness of the limiting value at the boundary θ = R depends on the

value of R: If R =∞, then the issue is moot as Λb(θ) is finite for all θ in IR, while

if R = 0, then the boundary point θ = 0 yields a zero limit. When 0 < R < ∞,

the result at the boundary point θ = R is highly dependent on the finer structure

of the sequence {v?n, n = 1, 2, . . .}. Lemma 4.4.4 presents results along these lines,

complementing Theorem 4.4.2 with a simple characterization of the finiteness of

E
[
eRσ
]

in Case II.

Lemma 4.4.4 Assume 0 < R < ∞. We have E
[
eRσ
]

infinite if either (i) v?n ≤

Rn infinitely often or (ii) v?n > Rn for n = N,N + 1, . . . for some finite N and

lim supn→∞(v?n −Rn) = L for some finite L ≥ 0.
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Proof. By Proposition 4.4.1, the finiteness of E
[
eRσ
]

is equivalent to that of

Σ(R). Under (i), the set N ≡ {n = 1, 2, . . . : v?n ≤ Rn} is countably infinite, so

that

Σ(R) ≥
∑
n∈N

exp (Rn− v?n) ≥
∑
n∈N

1 =∞.

Under (ii), the condition lim sup
n→∞

(v?n −Rn) = L for some finite L ≥ 0 implies for

any ε > 0, the existence of an integer n? = n?(ε) such that 0 ≤ v?n − Rn ≤ L + ε

for all n ≥ n?, whence

Σ(R) ≥
∞∑

n=n?

e−(L+ε) =∞.

Conditions (i) and (ii) are non overlapping, and do cover most distributions of

interest in case II. However, Lemma 4.4.4 does not cover the situation in (ii) with

lim sup
n→∞

(v?n −Rn) =∞. Indeed, with R = 1, for v?n = n+
√
n we find Λb(1) =∞,

while for v?n = n+ n
lnn

, we have Λb(1) <∞.

Theorem 4.4.2 indicates that the linear scaling

vn = n, n = 1, 2, . . . (4.4.10)

is a suitable candidate in Cases I and II. It also concurs with Theorem 4.3.2 in

deeming the linear scaling inappropriate for Case III, thus paving the way towards

a discussion on the possibilities offered by the class of sub–linear scaling functions.
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4.5 Sub–linear scaling sequences

4.5.1 General Results

We begin with a Lemma that holds in general for any choice of sub–linear scaling,

irrespective of the value taken by R, and for all θ in IR. The result, though

straightforward is quite significant, as it indicates that Λb(θ) is only determined by

the limit lim
n→∞

vn

n
∆
(
n, θ

vn

n

)
, when the selected scaling v is sub–linear.

Lemma 4.5.1 If the scaling sequence {vn, n = 1, 2, . . .} is selected so that

lim
n→∞

vn

n
= 0,

then for all θ in IR we have

Λb(θ) = λE [σ] θ (1 +Mv(θ)) , (4.5.1)

where

Mv(θ) ≡ lim
n→∞

vn
n

∆
(
n, θ

vn
n

)
. (4.5.2)

Proof. Fix θ in IR and set xn = θ
vn

n
in (4.2.7). Noting that lim

n→∞
xn = 0, we have

Λb(θ) = λE [σ] lim
n→∞

(exn − 1)
n

vn

(
1 +

(
1− e−xn

)
∆ (n, xn)

)
= λE [σ] θ lim

n→∞

(
exn − 1

xn

)(
1 + xne

−xn

(
exn − 1

xn

)
∆ (n, xn)

)
= λE [σ] θ

(
1 + lim

n→∞
xn∆ (n, xn)

)
,

achieved by invoking the limit

lim
x→0

ex − 1

x
= 1,
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and the result follows.

Lemma 4.5.1 clearly declares that evaluating Λb(θ) under a sub–linear scaling

really amounts to evaluating the limit Mv(θ). With this in mind, we evaluate this

limit under various conditions in the next few Lemmas.

Lemma 4.5.2 Assume R > 0. Under any sub–linear scaling, the limit (4.5.2)

satisfies Mv(θ) = 0, θ in IR.

Proof. When θ > 0, the definitions (4.2.4) and (4.5.2) yield

0 ≤Mv(θ) ≤ lim
n→∞

vn

n

n∑
r=1

eθ
vn
n
r−v?r

≤ lim
n→∞

vn
n

∞∑
r=1

eθ
vn
n
r−v?r

= lim
n→∞

vn

n
Σ
(
θ
vn

n

)
, (4.5.3)

by definition (4.4.3). By Lemma 4.4.1, Σ
(
θ
vn
n

)
is finite for any finite θ (since

θ
vn

n
< R for n large enough), thus allowing us to conclude by monotonicity that

Mv(θ) = 0 when θ > 0. A similar argument holds when θ ≤ 0 with a reversal of

the inequalities, thereby concluding the proof.

Here, we pause to comment briefly that though Theorem 4.4.2 had declared

the linear scaling as acceptable in Cases I and II, it did not rule out the existence

of other suitable scaling functions. In fact, as has been pointed out by Lemma

4.5.2, when R > 0, any sub–linear scaling yields a non–trivial value for Λb(θ) for

every θ 6= 0 in IR. The corresponding result for the case R = 0 is given next:

81



Lemma 4.5.3 Assume R = 0. Under any sub–linear scaling, the limit (4.5.2)

satisfies Mv(θ) = 0, θ ≤ 0 .

Proof. For the case θ < 0, we have

0 ≤ Mv(θ) ≤ lim
n→∞

vn
n

Σ
(
θ
vn
n

)
from (4.2.4) and (4.5.2). By Lemma 4.4.1 we know that Σ

(
θ
vn
n

)
is finite for θ < 0,

therefore implying by monotonicity that lim
n→∞

vn
n

Σ
(
θ
vn
n

)
= 0 and providing the re-

sult.

4.5.2 Scaling vn = v?n, (n = 1, 2, . . .)

The first intimation that v? might have a pivoting role in selecting the scaling

v was given by Theorem 4.3.2, which indicated the inadequacy of any scaling

that asymptotically increased infinitely faster than v?. This result is all the more

significant in the case when R = 0, leading one to suspect the natural choice

vn = v?n to work out.

In this situation, Theorem 4.3.2 and Lemma 4.5.3 allow us to identify the limit

Λb(θ) for all θ outside the interval (0, 1]. We now present two Lemmas that evaluate

Λb(θ), via Mv(θ) defined in (4.5.2), in the missing interval (0, 1], under the scaling

vn = v?n. The computation of Λb(θ) within this region is somewhat more involved,

as it seems to depend on the finer distributional properties of the rv σ. This being

the case, we introduce some additional assumptions to aid our calculations.

We say that a sequence {qn, n = 1, 2, . . .} is monotone decreasing (resp. in-
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creasing) in the limit if there exists a finite integer N such that the tail {qn, n =

N + 1, N + 2, . . .} is monotone decreasing (resp. increasing).

Assumption C1: The sequence {v?n/n, n = 1, 2, . . .} is monotone decreasing in

the limit.

Assumption C2a: We assume

∞∑
r=1

e−(1−θ)v?r <∞, 0 < θ < 1. (4.5.4)

Lemma 4.5.4 Assume R = 0. If the sequence {v?n, n = 1, 2, . . .} satisfies As-

sumptions C1 and C2a, then

Mv?(θ) = lim
n→∞

v?n
n

∆

(
n, θ

v?n
n

)
= 0 (4.5.5)

for each 0 ≤ θ ≤ 1.

Noting that

∞∑
r=1

e−v
?
r ≤

∞∑
r=1

e−(1−θ)v?r , 0 < θ < 1.

we see from (4.4.6) that a necessary condition for (4.5.4) to hold is that σ have a

finite moment of order two, i.e., E [σ2] < ∞. As this finite moment assumption

is not satisfied in the important case when the M |G|∞ process is long–range

dependent, we now present another criterion that ensures the conclusion of Lemma

4.5.4.

Assumption C2b: There exists a mapping Z : IN → IN for the sequence

{v?n/n, n = 1, 2, . . .} such that

(i) Z(n) < n for large n = 1, 2, . . .;
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(ii) lim
n→∞

v?n
Z(n)

n
=∞;

(iii) lim
n→∞

v?n
n

Z(n)

v?Z(n)

= 0.

Lemma 4.5.5 Assume R = 0. If the sequence {v?n, n = 1, 2, . . .} satisfies As-

sumptions C1 and C2b, then the result (4.5.5) still holds for 0 ≤ θ < 1.

The proofs to Lemmas 4.5.4 and 4.5.5 are provided in Appendix C.3.

The assumptions of Lemma 4.5.5 are satisfied in all cases known to the author,

and are easy to check for broad classes of distributions: If v?n ∼ nβ (0 < β < 1), we

can take Z(n) = nγ with 1 − β < γ < 1. If v?n ∼ (lnn)β (β > 0), then the choice

Z(n) = n(lnn)−γ with 0 < γ < β is convenient.

Lemmas 4.5.1, 4.5.3, 4.5.4, and 4.5.5, when combined with Theorem 4.3.2,

identify Λb(θ) under scaling v = v?, for all θ 6= 1 in IR. The resulting expression is

presented in the following Theorem.

Theorem 4.5.1 Assume R = 0. If a sequence {v?n, n = 1, 2, . . .} satisfies condi-

tion C1, and any one of conditions C2a and C2b, then the limit Λb(θ) exists for

all θ 6= 1 in IR, under scaling v = v? and is given by

Λb(θ) =

 λE [σ] θ if θ < 1

∞ if θ > 1.

4.5.3 Scaling vn = o(v?n), (n = 1, 2, . . .)

We have considered v?, and sub–linear functions asymptotically increasing faster

than v?, as potential scaling functions. For the sake of completeness, we now ad-

dress sub–linear forms that increase slower than v? in the limit, i.e., those sequences
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{vn, n = 1, 2, . . .} for which lim
n→∞

vn
n

= 0, and lim
n→∞

v?n
vn

=∞. Lemma 4.5.6 indicates

that under certain conditions, such scaling functions yield the limit Mv(θ) = 0 for

every θ > 0.

Lemma 4.5.6 Consider a scaling sequence {vn, n = 1, 2, . . .} such that

lim
n→∞

v?n
vn

=∞.

Assume R = 0. If the sequence {v?n/n, n = 1, 2, . . .} satisfies Assumptions C1 and

any one of C2a and C2b, then Mv(θ) = 0, θ > 0.

Proof. As lim
n→∞

vn

v?n
= 0, for ever δ > 0 we can find an integer N(δ), such that

vn
v?n

< δ, n > N(δ).

Fix θ > 0. By (4.5.2), we get

0 ≤ Mv(θ) ≤ lim
n→∞

vn
n

n∑
r=1

e

(
θ vn
n
−
v?r
r

)
r

= lim
n→∞

vn
v?n

v?n
n

n∑
r=1

e

(
θ vn
v?n

v?n
n
−
v?r
r

)
r

≤ δ lim
n→∞

v?n
n

n∑
r=1

e

(
θδ
v?n
n
−
v?r
r

)
r
.

Select δ <
1

θ
. The required result then follows under Assumptions C1 and any one

of C2a and C2b through arguments provided in Appendix C.3.
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4.6 Equivalent scaling sequences

The scaling sequence {vn, n = 1.2, . . .} that guarantees a non–trivial limit (4.1.4)

is obviously not unique. Indeed, consider two scaling sequences {vn, n = 1, 2, . . .}

and {wn, n = 1, 2, . . .} such that

lim
n→∞

wn
vn

= K (4.6.1)

for some finite positive constant K. Using the superscript v or w in order to

explicitly indicate the dependence on the scaling sequence, we denote the quantity

defined in (4.1.4), by Λv
b(θ) and Λw

b (θ), respectively, for each θ in IR. We now

examine their relationship with the help of Lemma 4.6.1.

Lemma 4.6.1 Consider two scaling sequences {vn, n = 1, 2, . . .} and {wn, n =

1, 2, . . .} satisfying (4.6.1) for some positive constant K. Then,

Λw
b (θ) =

1

K
Λv
b(Kθ), θ ∈ IR (4.6.2)

except possibly at an isolated point θ? where Λv
b((Kθ

?)−) < Λv
b((Kθ

?)+) =∞.

Proof. Equation (4.6.1) implies that for any choice of δ > 0, there exists an

integer N(δ) such that

K − δ ≤
wn
vn
≤ K + δ

for every n > N(δ).

For any θ > 0, the inequalities

E
[
exp

(
θ(K − δ)

vn

n
Sbn

)]
≤ E

[
exp

(
θwn

n
Sbn

)]
≤ E

[
exp

(
θ(K + δ)

vn

n
Sbn

)]
,
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then hold for all n > N(δ). Taking the natural logarithm and dividing by vn and

letting n go to infinity gives

Λv
b (θ(K − δ)) ≤ lim

n→∞

wn
vn

1

wn
lnE

[
exp

(
θwn
n
Sbn

)]
≤ Λv

b (θ(K + δ)) ,

leading to the conclusion that

Λv
b (θ(K − δ)) ≤ KΛw

b (θ) ≤ Λv
b (θ(K + δ)) , θ > 0. (4.6.3)

The case θ ≤ 0 can be dealt with in an identical fashion, and also yields the in-

equality (4.6.3), but with the inequalities reversed. The result follows directly by

letting δ go to zero in (4.6.3).

A similar argument can be made with regard to the scaling sequence {an, n =

1, 2, . . .}. The following result, proved as a Corollary to Lemma 4.6.1, confirms the

claim made in Section 4.1, that the form of the function Λb derived under scaling

an = n, n = 1, 2, . . . does not change under a different selection of a, (except for a

multiplicative factor) as long as (4.1.3) holds.

We introduce the notation Λ
(a,v)
b to identify the pair of scalings (a, v) under

which the function Λb is derived. For the particular selection an = n, n = 1, 2, . . .,

we drop the double superscript and continue with our previous terminology, allow-

ing Λv
b to denote the use of the implicit scaling an = n, n = 1, 2, . . . and of course

{vn, n = 1, 2, . . .}.

Corollary 4.6.1 Consider a scaling sequence {an, n = 1, 2, . . .} satisfying (4.1.3)

for some finite, non–zero α. Then under any scaling v, we have

Λ
(a,v)
b (θ) = Λv

b(θα), θ ∈ IR, (4.6.4)

except possibly at an isolated θ? ∈ IR where Λv
b((αθ

?)−) < Λv
b((αθ

?)+) =∞.
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Proof. Fix θ in IR. By (4.2.7), it holds that

Λ
(a,v)
b (θ) = λE [σ] lim

n→∞

(
eθ

vn
an − 1

) n

vn

(
1 +

(
1− e−θ

vn
an

)
∆

(
n, θ

vn

an

))
= λE [σ] lim

n→∞

(
eθ

wn
n − 1

) n

wn

n

an

(
1 +

(
1− e−θ

wn
n

)
∆
(
n, θ

wn

n

))
,

where we have set wn = vn
n

an
. Hence,

Λ
(a,v)
b (θ) = αΛw

b (θ),

and we have (4.6.4) upon applying Lemma 4.6.1 with lim
n→∞

wn

vn
= K = α.

Lemma 4.6.1 and Corollary 4.6.1 when combined, provide quick conversion

equations relating the function Λb under different pairs of scalings (a, v). Corre-

sponding relations can also be derived for Λ and Λ?, and are presented below in

Theorem 4.6.1.

Theorem 4.6.1 Consider scalings (a, v) and (â, v̂) such that

lim
n→∞

v̂n
vn

= K̂, lim
n→∞

n

an
= α, and lim

n→∞

n

ân
= α̂, (4.6.5)

with 0 < K̂, α, α̂ <∞. The following conversion relations then apply.

(i) For all θ in IR, except possibly for an isolated point θ? where

Λ
(a,v)
b

((
K̂

α̂

α
θ?
)
−

)
< Λ

(a,v)
b

((
K̂

α̂

α
θ?
)

+

)
=∞, (4.6.6)

we have

(a)

Λ
(â,v̂)
b (θ) =

1

K̂
Λ

(a,v)
b

(
K̂

α̂

α
θ

)
; (4.6.7)
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(b)

Λ(â,v̂)(θ) =
1

K̂
Λ(a,v)

(
K̂

α̂

α
θ

)
. (4.6.8)

(ii) If the limit Λ(â,v̂)(θ?) exists,

Λ?(â,v̂)(z) =
1

K̂
Λ?(a,v)

(
z
α

α̂

)
, z > 0. (4.6.9)

Proof. Fix θ in IR. By applying methods similar to those used in the proof of

Lemma 4.6.1, it is possible to show that

1

K̂
Λ(a,v)

(
K̂

α̂

α
θ − ε

)
≤ Λ

(â,v̂)
b (θ) ≤

1

K̂
Λ

(a,v)
b

(
K̂

α̂

α
θ + ε

)
(4.6.10)

for any ε > 0, and (4.6.7) follows directly for all θ 6= θ? in IR.

Applying this result to (4.1.5) gives

Λ(â,v̂)(θ) =
1

K̂
Λ

(a,v)
b

(
K̂

α̂

α
θ

)
− cα̂θ

=
1

K̂

(
Λ(a,v)

(
K̂

α̂

α
θ

)
+ cαK̂

α̂

α
θ

)
− cα̂θ, θ 6= θ?, θ ∈ IR,

easily yielding (4.6.8).

Finally, to prove (4.6.9), we turn to (3.2.16), by which

Λ?(â,v̂)(z) ≡ sup
θ>0

(
θz − Λ(â,v̂)(θ)

)
for all z > 0. By the non–decreasing nature of Λb, we infer from (4.6.6) and

(4.6.10), that Λ(â,v̂)(θ) =∞ for all θ > θ?, thereby implying that

Λ?(â,v̂)(z) = sup
0<θ≤θ?

(
θz − Λ(â,v̂)(θ)

)
, z > 0.
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As long as the limit Λ(â,v̂)(θ?) exists, its specific value is of no consequence in

evaluating Λ?(â,v̂). The existence of Λ(â,v̂)(θ?), together with the fact

lim
θ↑θ?

Λ(â,v̂)(θ) ≤ Λ(â,v̂)(θ?),

is enough to conclude that

Λ?(â,v̂)(z) = sup
0<θ<θ?

(
θz − Λ(â,v̂)(θ)

)
= sup

0<θ<θ?

(
θz −

1

K̂
Λ(a,v)

(
K̂

α̂

α
θ

))
=

1

K̂
sup

0<θ′<K̂ α̂
α
θ?

(
θ′z

α

α̂
− Λ(a,v)(θ′)

)
=

1

K̂
sup
θ>0

(
θz

α

α̂
− Λ(a,v)(θ)

)
=

1

K̂
Λ?(a,v)

(
z
α

α̂

)
, z > 0,

where the last but one step follows because Λ(a,v)(θ) =∞ for all θ > K̂
α̂

α
θ?.

As the functions Λ(a,v) and Λ(â,v̂) have the same form except for multiplicative

factors K and α, it follows that if the conditions of the Gärtner-Ellis Theorem hold

for one, they must necessarily hold for the other. The same is true for requirement

A1 outlined in Section 3.4.1.

A primary advantage of Theorem 4.6.1 is its easy application in Case III, when

R = 0. Often, the function v? takes on a rather cumbersome form, making its use

as a scaling function inconvenient. Theorem 4.6.1 allows a switch to any alternate

scaling v that obeys lim
n→∞

vn

v?n
= 1, with no modification whatsoever, to the form

of Λ. Even so, in order to use such a scaling, we still have to ensure that the

conditions laid out in Theorem 4.5.1 are satisfied. As this calculation involves the
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function v?, it too could prove a challenging task. The following Lemma suggests

a way around this problem; its proof is trivial and has not been included.

Lemma 4.6.2 Consider a sequence {vn, n = 1, 2, . . .} such that lim
n→∞

v?n
vn

= K,

with 0 < K < ∞. Any of the three conditions C1, C2a, or C2b is satisfied by

the sequence v? iff it is simultaneously satisfied by the scaling v in place of v?.

The upshot of this discussion is that for Case III, we can blithely adopt any

convenient scaling v that obeys lim
n→∞

vn

v?n
= 1, and satisfies a modified version of the

requirements stated in Theorem 4.5.1, the modification in the conditions being a

simple replacement of the function v? by v.

4.7 Review and discussion

We have seen a fair number of theorems and lemmas in the last few sections, each

evaluating the function Λb(θ) under a particular scaling v, for θ belonging to some

subset of IR. In this section we organize the results and present them in a simple

and concise form so as to facilitate their application. We visit each of the three

categories, i.e., I, II, and III, separately and recount the behavior of Λb(θ) in the

various regimes of θ. We always assume the selection an = n, n = 1, 2, . . ..

Case I: R =∞

For Case I, G has a super–exponential tail. Grouping together the results of

Theorems 4.3.1, 4.4.2 and 4.6.1, and Lemmas 4.5.1 and 4.5.2, we arrive at the

following result.
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Theorem 4.7.1 Assume R =∞ and select the scaling {vn, n = 1, 2, . . .} so that

lim
n→∞

vn

n
= K, 0 ≤ K ≤ ∞. Then, for each θ in IR, the limit Λb(θ) is given by

Λb(θ) =

 ∞ θ > 0,

0 θ ≤ 0,
if K =∞,

Λb(θ) = λ
K
E
[
eKθσ − 1

]
θ ∈ IR, if 0 < K <∞,

Λb(θ) = λE [σ] θ θ ∈ IR, if K = 0.

Case II: 0 < R <∞

It is easy to check that the condition 0 < R < ∞, or equivalently, v?t = O(t), is

tantamount to G having an exponential tail. The next theorem is derived from

Theorems 4.3.1, 4.4.2 and 4.6.1, and Lemmas 4.5.1 and 4.5.2.

Theorem 4.7.2 Assume 0 < R <∞ and select the scaling {vn, n = 1, 2, . . .} so

that lim
n→∞

vn
n

= K, 0 ≤ K ≤ ∞. Then, for each θ 6= R
K

in IR, the limit Λb(θ) is

given by

Λb(θ) =

 ∞ θ > 0,

0 θ ≤ 0,
if K =∞,

Λb(θ) =

 ∞ θ > R
K
,

λ
K
E
[
eKθσ − 1

]
θ < R

K
,

if 0 < K <∞,

Λb(θ) = λE [σ] θ θ ∈ IR, if K = 0.
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Case III: R = 0

When R = 0, i.e., v?t = o(t), the situation is technically more involved, and addi-

tional growth assumptions are required on the scaling sequence {v?t , t = 1, 2, . . .}.

Combining Theorems 4.3.1, 4.5.1, and 4.6.1, and Lemmas 4.5.1, 4.5.3 and 4.5.6,

we construct the following theorem.

Theorem 4.7.3 Assume R = 0, and that condition C1 holds together with at

least one of conditions C2a and C2b. Select the scaling {vn, n = 1, 2, . . .} so that

lim
n→∞

vn

n
= K, 0 ≤ K ≤ ∞ and lim

n→∞

v?n
vn

= C, where 0 ≤ C ≤ ∞. Then, for each

θ 6= C in IR, the limit Λb(θ) is given by

Λb(θ) =

 ∞ θ > 0,

0 θ ≤ 0,
if K =∞,

Λb(θ) =

 ∞ θ > 0,

λE [σ] θ θ ≤ 0,
if K <∞, C = 0,

Λb(θ) =

 ∞ θ > C,

λE [σ] θ θ < C,
if 0 < C <∞,

Λb(θ) = λE [σ] θ θ ∈ IR, if C =∞.

For cases I and II, when K = 0, we have from (4.1.6),

Λ?(x) = sup
θ>0

(x+ c− rin)θ = ∞, x > 0

with rin = λE [σ] < c. This leads to the trivial upper bound γ? = −∞ in (3.0.3),

indicating that such a selection of v does not increase to infinity fast enough.

The same argument applies for case III when C =∞.
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When K = ∞ for cases I and II, and when C = 0 for case III, we have the

opposite problem, i.e.,

Λ?(x) = sup
θ∈IR

(
(x+ c)θ − Λb(θ)

)
= max

(
sup
θ>0

(
(x+ c)θ − Λb(θ)

)
, sup
θ≤0

(
(x+ c)θ − Λb(θ)

))
= sup

θ≤0

(
(x+ c)θ − Λb(θ)

)
= 0, x > 0

as the scaling v increases too fast to ∞.

Having disqualified these alternatives, we are left with the following straight-

forward selection for scaling v:

• Cases I and II:

lim
n→∞

vn
n

= K, 0 < K <∞; (4.7.1)

• Case III:

lim
n→∞

v?n
vn

= C, 0 < C <∞. (4.7.2)

In case II, as lim
n→∞

v?n
n

= R, 0 < R <∞, the selected scaling could alternatively

be required to satisfy the condition (4.7.2), with C = R
K

. We now see that Cases

II and III could in fact have been grouped together for the purpose of presenting

the results. This would have highlighted the influence of the service time rv σ as

the scaling (4.7.2) applies to both cases. However, the original presentation has

the advantage of suggesting a probabilistic viewpoint which further emphasizes the

role played by the distribution of σ.

To see that, we study an input process closely related to the M |G|∞ input

process (λ, σ), according to which the work associated with a session is offered
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instantaneously to the buffer, rather than gradually as was the case for the M |G|∞

input model.

4.7.1 Comparison with the instantaneous input model

Consider the instantaneous input process, {an, n = 0, 1, . . .} given by

a0 =
b∑
i=1

σ̂i; an =

βn∑
i=1

σn,i, n = 1, 2, . . .

where the families of i.i.d. rvs b, {βn, n = 1, 2, . . .}, {σn,i, n = 1, 2, . . . , i =

1, 2, . . .} and {σ̂i, i = 1, 2, . . .} are described in Section 2.1.

The partial sum sequence {San, n = 0, 1, . . .} associated with {an, n = 0, 1, . . .}

and given by

San =
n∑
t=0

at, n = 0, 1, . . . (4.7.3)

is in essence the workload process offered to the infinite server queue.

Under the enforced independence assumptions, we readily get for all n =

1, 2, . . . that

E
[
eθS

a
n
]

= E
[
E
[
eθσ̂
]b]

E
[
E
[
eθσ
]β]n

, θ ∈ IR (4.7.4)

where β is a IN–valued rv which is Poisson distributed with parameter λ. Hence,

lim
n→∞

1

n
lnE

[
eθS

a
n
]

= lnE
[
E
[
eθσ
]β]

= λE
[
eθσ − 1

]
, θ ∈ IR (4.7.5)

and going back to (4.1.1) and to Theorem 4.4.2, we conclude to the equality of

the limiting logarithmic moment generating functions of the processes {Sbn, n =

0, 1, . . .} and {San, n = 0, 1, . . .} (under the linear scaling (4.4.10)). This equality
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suggests a possible connection between these processes at the level of large devia-

tions properties, and a natural way to formulate such a relationship passes through

the notion of exponential equivalence [15, p. 114]. As pointed out in [15, Thm.

4.2.13, p. 114], such an exponential equivalence, once established, readily leads

to the aforementioned equality. Therefore, a straightforward way to derive The-

orem 4.4.2 would be to simply establish by a direct argument that the processes

{n−1(San − cn), t = 1, 2, . . .} and {n−1(Sbn − cn), n = 1, 2, . . . are indeed exponen-

tially equivalent. This is easily done with the help of the identities

t∑
s=1

b?(0)
s =

b∑
n=1

min(t, σ̂n − 1) (4.7.6)

and

t∑
r=1

b(a)
r =

t∑
s=1

βs∑
i=1

min(t− s+ 1, σs,i), (4.7.7)

derived through the relations (2.1.3) and (2.1.4) for a stationary M |G|∞ process.

As a consequence of this exponential equivalence, the sequence {n−1(San −

cn), n = 1, 2, . . .} also satisfies the Large Deviations Principle with rate func-

tional identical to that of {n−1(Sbn − cn), n = 1, 2, . . .}. This then implies that

lim
b→∞

1

b
lnP [qa∞ > b] = lim

b→∞

1

b
lnP [q∞ > b] = −γ, (4.7.8)

where

qa∞ =st sup (San − cn, n = 0, 1, . . .) , (4.7.9)

represents the steady–state buffer content given by the Lindley recursion

qa0 =
b∑
i=1

σ̂i; qan+1 = [qan + an+1 − c]
+, n = 0, 1, . . . ,

under the obvious stability condition E [a1] < c.

96



Chapter 5

Buffer Asymptotics for the M |G|∞ process

The key element in computing the upper and lower bounds γ? and γ?, lies in the pair

of scalings (a, v) which provide a non–trivial Λ. The role of a may be interpreted

as that of the law of large numbers as opposed to v which is representative of a

large deviations scaling.

Having resolved this question in the previous chapter, we now proceed to derive

upper and lower bounds to lnP [q∞ > b], as outlined in Chapter 3.

5.1 Selection of h and g

We have seen in the previous chapter that the scalings a and v are not unique.

Any pair of scalings (a, v) such that

• a is asymptotically linear, i.e., it satisfies (4.1.3),

• v satisfies (4.7.2) for sub–linear v?, and (4.7.1) otherwise,

is acceptable. Moreover, as indicated by Theorem 4.6.1, the corresponding func-

tions Λ and Λ? do not change their basic form for all acceptable scaling pairs,
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except for multiplicative scale factors. In what follows, we see that though these

scale factors do influence the functions g and h, defined by (3.2.4), they do not

appear in the final expressions for γ? and γ?.

As before, we use the superscript (a, v) to identify the scalings used.

Lemma 5.1.1 Let v and w be scaling functions obeying (4.6.1) with 0 < K <∞.

For every pair of mappings h(a,v), g(a,v) : IR+ → IR+ satisfying (3.2.4) with scalings

(a, v), there exists a corresponding pair of mappings h(a,w), g(a,w) : IR+ → IR+ given

by

h(a,w) = h(a,v) and g(a,w) = Kg(a,v) (5.1.1)

that satisfy (3.2.4) with scalings (a, w).

Proof. For each y > 0, we note from (3.2.4) and (4.6.1) that

lim
b→∞

wa−1
l (b/y)

h(a,v)(b)
= lim

b→∞

wa−1
l (b/y)

va−1
l (b/y)

· lim
b→∞

va−1
l (b/y)

h(a,v)(b)

= Kg(a,v)(y). (5.1.2)

A similar equality holds for the right inverse function a−1
r , concluding the proof.

We now consider the particular selection an = n, n = 1, 2, . . .. In keeping

with our earlier convention, we drop the scaling a from the superscript and only

specify the scaling v. The generalized inverses in this case are given by (3.2.10).

In reference to (3.2.4), suppose now we can find mappings hv, gv : IR+ → IR+ such

that

lim
b→∞

vdb/ye

hv(b)
= lim

b→∞

vbb/yc

hv(b)
= gv(y), y > 0. (5.1.3)
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A companion result to Lemma 5.1.1 can then be derived under the fairly general

conditions described below:

Assumption E1: For every pair of non–decreasing mappings n1, n2 : IR+ → II+,

the condition lim
x→∞

n1(x)

n2(x)
= 1, implies lim

x→∞

vn1(x)

vn2(x)

= 1.

Lemma 5.1.2 Consider any scaling pair (a, v) such that a obeys (4.1.3) with

0 < α < ∞, and v satisfies Assumption E1. Then, for every pair of mappings

hv, gv : IR+ → IR+ satisfying (5.1.3), there exists a corresponding pair of mappings

h(a,v), g(a,v) : IR+ → IR+ given by

h(a,v)(b) = hv(b) and g(a,v)(y) = gv
( y
α

)
, (5.1.4)

that satisfy (3.2.4) with scalings (a, v).

Proof. Fix x ≥ 0. By (3.2.1) we have aa−1
l (x)−1 ≤ x ≤ aa−1

l (x) Simple algebraic

manipulations yield

αaa−1
l (x)−1 ≤ dαxe ≤ αaa−1

l (x) + 1,

so that

α ·
aa−1

l (x)−1

a−1
l (x)

≤
dαxe

a−1
l (x)

≤ α ·
aa−1

l (x)

a−1
l (x)

+
1

a−1
l (x)

.

By virtue of (4.1.3) and by the increasing nature of a−1
l , we easily conclude

that

lim
x→∞

dαxe

a−1
l (x)

= 1. (5.1.5)

Similarly, it can be shown that

lim
x→∞

bαxc

a−1
r (x)

= 1. (5.1.6)
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Under Assumption E1, (5.1.5) and (5.1.6) imply

lim
x→∞

vdαxe

va−1
l (x)

= lim
x→∞

vbαxc

va−1
r x)

= 1,

which, on setting x = b/y for a fixed y > 0, yields

lim
b→∞

va−1
l (b/y)

hv(b)
= lim

b→∞

va−1
r (b/y)

hv(b)
= gv

( y
α

)
,

via (5.1.3), thus completing the proof.

We end this section with a generalized version of Lemmas 5.1.1 and 5.1.2:

Lemma 5.1.3 Consider scalings (a, v) and (â, v̂) satisfying (4.6.5) with 0 < K̂, α, α̂ <

∞. Assume v (and therefore v̂) satisfies E1. Then, for every pair of mappings

h(a,v), g(a,v) : IR+ → IR+ satisfying (3.2.4) with scalings (a, v), there exists a corre-

sponding pair of mappings h(â,v̂), g(â,v̂) : IR+ → IR+, given by

h(â,v̂)(b) = h(a,v)(b) and g(â,v̂)(y) = K̂g(a,v)
(
y
α

α̂

)
, (5.1.7)

that satisfy (3.2.4) with scalings (â, v̂).

5.2 γ? and γ?

Having computed Λ(a,v) as directed in Chapter 4, and selected appropriate map-

pings h(a,v), g(a,v) IR+ → IR+, we now realize our primary objective of providing

asymptotic bounds of the form (3.0.2) and (3.0.3).

5.2.1 The lower bound

In order to compute the lower bound via Proposition 3.3.3, we require Λ(a,v) to

satisfy conditions GE 1 - GE 3 of the Gärtner–Ellis Theorem (Theorem 3.2.1).
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As per our remarks in Section 4.6, if the above–mentioned conditions hold for Λ

computed under scalings (a, v), then, by Theorem 4.6.1, they must hold under any

scaling pair (â, v̂) satisfying

0 < lim
n→∞

v̂n
vn
, lim
n→∞

ân
an

<∞, (5.2.1)

as long as the limit Λ(â,v̂)(θ) exists for all θ in IR . Under these circumstances,

Proposition 3.3.3 applies under both scaling pairs (a, v) and (â, v̂), and we have

γ(â,v̂)
? = inf

y>0
g(â,v̂)(y)Λ?(â,v̂)(y)

= inf
y>0

K̂g(a,v)
(
y
α

α̂

) 1

K̂
Λ?(a,v)

(
y
α

α̂

)
(5.2.2)

= inf
y>0

g(a,v)(y)Λ?(a,v)(y)

= γ(a,v)
? , (5.2.3)

where (5.2.2) follows under assumption E1, via Lemma 5.1.3 and Theorem 4.6.1.

We note in passing that in our context, conditions GE 1 and GE 2 together,

are equivalent to Assumption A1 stated in Section 3.4.1.

5.2.2 The upper bound

To compute the upper bound γ?, and establish an equivalence similar to (5.2.3),

we must first investigate conditions A1, A2 and A3 under various scalings.

Consider the scalings (a, v) and (â, v̂) described in Lemma 5.1.3. Further,

assume that Λ(a,v)(θ) and Λ(â,v̂)(θ) exist for all θ in IR . In case A1 holds under

scalings (a, v), then, by Theorem 4.6.1, it must also hold under (â, v̂). Further, if

(a, v) satisfies assumption A2 with constant κ(a,v), it follows that (â, v̂) must also

satisfy A2 albeit with a different constant κ(â,v̂) given by

κ(â,v̂) =
κ(a,v)

K̂
. (5.2.4)
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By Lemma 5.1.3, the function h remains unaffected by the transformation from

(a, v) to (â, v̂). As assumption A3 solely depends on the form of the function h,

it must simultaneously hold for both pairs of scalings or none at all.

By these observations it is clear that if Propositions 3.4.3 and 3.4.4 apply

under one pair of scalings, they also apply under the other. Of course, there still

remains the possibility that the corresponding upper bounds γ?(a,v) and γ?(â,v̂) are

not identical, a question we now speedily dismiss.

Proposition 5.2.1 Consider the scalings (a, v) and (â, v̂) described in Lemma

5.1.3. Assume that Λ(a,v)(θ) and Λ(â,v̂)(θ) exist for all θ in IR. Further, assume

conditions A1–A3 hold under (a, v). Then,

(i) A1–A3 also hold under (â, v̂);

(ii) The inequalities

lim sup
b→∞

1

h(a,v)(b)
lnP [q∞ > b] ≤ −γ?(a,v), (5.2.5)

and

lim sup
b→∞

1

h(â,v̂)(b)
lnP [q∞ > b] ≤ −γ?(â,v̂) (5.2.6)

hold, with γ?(â,v̂) = γ?(a,v) given by Proposition 3.4.4, and h(â,v̂)(b) = h(a,v)(b),

for all b > 0.

Proof. The arguments leading to part (i) of Proposition 5.2.1 have already been

discussed earlier in this section. Proposition 3.4.4 applies for both pairs of scalings,

yielding (5.2.5) and (5.2.6), with

γ?(â,v̂) = sup
y>0

g(â,v̂)(y)
(
min

(
θ

(â,v̂)
0 y,Λ?(â,v̂)(0)

)
− κ(â,v̂)

)
, (5.2.7)
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and

θ
(â,v̂)
0 = sup{θ > 0 : Λ(â,v̂)(θ) < 0}

= sup

{
θ > 0 : Λ(a,v)

(
K̂

α̂

α
θ

)
< 0

}
(5.2.8)

= sup

{
1

K̂

α

α̂
θ′ > 0 : Λ(a,v)(θ′) < 0

}
=

1

K̂

α

α̂
θ

(a,v)
0 ,

where (5.2.8) follows on account of Theorem 4.6.1. Incorporating this result into

(5.2.7) and employing (5.2.4), we have

γ?(â,v̂) = sup
y>0

g(â,v̂)(y)

(
min

(
1

K̂

α

α̂
θ

(a,v)
0 y,Λ?(â,v̂)(0)

)
−

1

K̂
κ(a,v)

)
=

1

K̂
sup
y>0

g(â,v̂)(y)
(
min

(α
α̂
θ

(a,v)
0 y,Λ?(a,v)(0)

)
− κ(a,v)

)
by Theorem 4.6.1. Finally, using Lemma 5.1.3, we have

γ?(â,v̂) =
1

K̂
sup
y>0

K̂ g(a,v)
(α
α̂
y
)(

min
(
θ

(a,v)
0

α

α̂
y,Λ?(a,v)(0)

)
− κ(a,v)

)
= sup

y′>0
g(a,v)(y′)

(
min

(
θ

(a,v)
0 y′,Λ?(a,v)(0)

)
− κ(a,v)

)
= γ?(a,v).

In the next Proposition, proved in Appendix D.1, we establish that γ?(â,v̂) = γ?(a,v),

even in the case when A3 fails to hold.

Proposition 5.2.2 Consider the scalings (a, v) and (â, v̂) described in Lemma

5.1.3. Assume that Λ(a,v)(θ) and Λ(â,v̂)(θ) exist for all θ in IR. Further, assume

conditions A1–A2 hold under (a, v). Then,
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(i) A1–A2 also hold under (â, v̂);

(ii) The inequalities (5.2.5) and (5.2.6) still hold, with γ?(â,v̂) = γ?(a,v) given by

Proposition 3.4.3, and h(â,v̂)(b) = h(a,v)(b), for all b > 0.

The fact that the bounds γ? and γ? remain unaffected by the transformation

from (a, v) to (â, v̂) proves quite convenient. In conjunction with the results of Sec-

tion 4.6, it implies that our entire analysis so far is dictated solely by the asymptotic

behavior of scalings a and v. Therefore, in applying the results of Chapter 4, the

appropriate conditions can all be checked by replacing (a, v) by any other pair

(â, v̂), asymptotically equivalent to it in the sense of (4.6.5), and hopefully more

tractable analytically. We shall refer to any such scalings as auxiliary scalings, and

will employ them while checking the necessary conditions.

5.3 Buffer Asymptotics for the M |G|∞ process

We are now close to realizing our initial objective of deriving asymptotic bounds of

the kind (3.0.2) and (3.0.3) for a queue fed by M |G|∞ traffic. For any particular

distribution G, we begin by identifying the appropriate pair of auxiliary scalings

(a, v) and the corresponding function Λ, via Theorems 4.7.1, 4.7.2 or 4.7.3. Next,

we select functions h and g as outlined earlier in this chapter. Finally, applying

the results derived in Chapter 3, we achieve the asymptotic bounds to the tail

probability of buffer exceedance.
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5.3.1 Auxiliary scalings

As we have already seen, beyond being asymptotically linear, there are no restric-

tions on the selection of sequence a. We therefore make the most convenient choice,

and set an = n, n = 1, 2, . . . without further comment.

The selection of an auxiliary scaling in lieu of the large deviations scaling v, is

closely linked with the form of v?. However, as we shall now see, the determination

of such a scaling is possible even without the explicit computation of the function

v?.

With this in mind, let w? : IR+ → IR+ denote a mapping such that

e−w
?
n ≡ P [σ > n] , n = 0, 1, . . . , (5.3.1)

We make the reasonable assumption that the limit

lim
n→∞

lnn

w?n
≡W, (5.3.2)

exists for some non–negative W (possibly infinite). The following lemma then

holds.

Lemma 5.3.1 E [σ] is finite (resp. infinite) if W < 1 (resp. > 1).

Proof.

E [σ] =
∞∑
n=0

P [σ > n]

=
∞∑
n=0

e−w
?
n. (5.3.3)

Assume 0 < W <∞, and pick any δ > 0 such that δW < 1. Then, (5.3.2) implies

that there exists an integer N(δ) so that

1

W
− δ ≤

w?n
lnn
≤

1

W
+ δ, n > N(δ), (5.3.4)
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and

∞∑
n=N(δ)+1

n−( 1
W

+δ) ≤
∞∑

n=N(δ)+1

e−w
?
n ≤

∞∑
n=N(δ)+1

n−( 1
W
−δ).

Clearly, all three sums are infinite for W > 1, and finite for W < 1, proving the

result for all non–zero, finite W 6= 1. The cases W = 0 and ∞ are proved along

similar lines.

As we do require E [σ] to be finite, we proceed with the assumption that 0 ≤W <

1. We ignore the disagreeable case W = 1, for which the finiteness of E [σ] may

not be established without additional information.

Lemma 5.3.2 Assume that 0 ≤ W < 1. In case W = 0, further assume that the

sequence
lnn

w?n
is eventually decreasing. Then the limit

lim
n→∞

v?n
w?n

= 1−W (5.3.5)

always holds.

This result immediately suggests a simple procedure by which the auxiliary

scaling may be identified at a glance. If the limit

lim
n→∞

w?n
n

= L, 0 ≤ L ≤ ∞, (5.3.6)

exists, then we have

R = (1−W )L (5.3.7)

under the assumptions of Lemma 5.3.2, where R and W are defined by (2.3.1)

and (5.3.2), respectively. Having computed R, we already know that the auxiliary

scaling vn = n, n = 1, 2, . . . works for Cases I and II, while in Case III we may

set vn = (1−W )w?n, n = 1, 2, . . ., in accordance with Lemma 5.3.2 and Theorem

4.7.3.
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5.3.2 Cases I and II: R > 0

We have the auxiliary scaling vn = n, hence we set h(b) = b, and correspondingly

g(x) = 1/x. Then by Theorems 4.7.1 and 4.7.2, we have

Λ(θ) =

 λE
[
eθσ − 1

]
− cθ θ < R,

∞ θ > R,
(5.3.8)

indicating that condition A1, and by their equivalence, conditions GE 1 and GE

2 are satisfied. As
lnn

n
is asymptotically monotonically decreasing, A2 also holds

with κ = 0.

The bounds γ? and γ? are now available without further calculation, as we

recall that the details have already been worked out as a special case in Section

3.5. The upper bound given by

γ? = sup{θ > 0 : Λ(θ) < 0}

= sup
{

0 < θ < R : E
[
eθσ
]
< 1 + θ

c

λ

}
, (5.3.9)

holds under no additional assumptions, while for the lower bound, γ? = γ? in the

event that assumption GE 3 is satisfied.

Denoting the input rate to the multiplexer by rin = λE [σ], and the utilization

factor by

ρ =
rin
c

=
λE [σ]

c
, (5.3.10)

(5.3.9) may be alternatively expressed as

γ? = sup {0 < θ < R : ρ < f(θ)} , (5.3.11)

where the mapping f : (0,∞)→ (0, 1) is defined by

f(θ) ≡
E [θσ]

E [eθσ]− 1
, θ > 0. (5.3.12)
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The function f being strictly decreasing, we can define the corresponding inverse

function f−1 : (0, 1)→ (0,∞), allowing (5.3.11) to be rewritten as

γ? = sup
{
0 < θ < R : θ < f−1(ρ)

}
= f−1(ρ). (5.3.13)

We present these results more formally in the following proposition:

Proposition 5.3.1 Assume R > 0 and λE [σ] < c. Then, under condition GE 3,

we have

lim
b→∞

1

b
lnP [q∞ > b] = −γ, (5.3.14)

with

γ = f−1(ρ), (5.3.15)

where the function f−1 : (0, 1)→ (0,∞) is as defined in (5.3.12) and ρ is given by

(5.3.10).

It is noteworthy that while the computation of the limit γ? is closely linked

with the distribution G, its functional dependence on the parameters c and λ is

only through the utilization factor ρ.

5.3.3 Case III: R = 0

Select vn = (1−W )w?n, n = 1, 2, . . .. Then, under conditions C1 and at least one

of C2a and C2b,

Λ(θ) =

 (λE [σ]− c)θ θ < 1

∞ θ > 1
(5.3.16)
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by Theorem 4.7.3 and Lemma 4.6.2, thus meeting the requirements imposed by

A1, GE 1 and GE 2.

Unfortunately, the same cannot be said of assumption GE 3, which fails to

hold as

lim
θ→1

∣∣∣∣∂Λ(θ)

∂θ

∣∣∣∣ = c− λE [σ] 6=∞, (5.3.17)

indicating that Λ is not steep, and precluding the use of Proposition 3.3.3 to provide

the lower bound.

However, the upper bound may still be computed under the premise that κ 6=

∞, and A2 holds. By (3.4.7) and (5.3.2), we have

κ =
1

1−W
lim
n→∞

lnn

w?n

=
W

1−W
. (5.3.18)

Lemma 5.3.1 dictates that 0 ≤ W < 1 for finite E [σ], whence 0 ≤ κ < ∞.

Furthermore, κ = 0 iff W = 0, in which case under the assumptions of Lemma

5.3.2, the sequence
lnn

w?n
, and hence

lnn

vn
is eventually decreasing. In other words,

condition A2 always holds under the assumptions of Lemma 5.3.2.

For a number of distributions G, the function v belongs to the class of regularly

varying functions. As mentioned earlier in Lemma 3.2.2, this suggests a natu-

ral choice for h as the piecewise–continuous interpolation of the auxiliary scaling

sequence v, in which case

g(y) = y−ρ, ρ ≥ 0. (5.3.19)

Finally, we recall that the condition Λ?(0) > κ must hold in order to ensure

a non–trivial upper bound. Reference to (3.2.16) and (5.3.18) translates this re-

quirement to c− λE [σ] > W
1−W .
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5.3.4 Beyond Large Deviations Techniques

At this point, we have seen that in the non–exponential case a non–trivial upper

bound (3.0.2) always holds (under the assumption Λ?(0) > κ), whereas the lower

bound (3.0.3) is in doubt, at least if one insists on going through Proposition 3.3.3.

However, the possibility that the process {t−1(Sbt − ct), t = 1, 2, . . .} satisfies the

Large Deviations Principle with rate functional Λ? still remains, though we cannot

look to the Gärtner–Ellis Theorem for its proof. In other words, the lower bound

suggested by (3.3.7) may yet prove valid, but cannot be derived under the terms

of Proposition 3.3.3.

Supposing for the sake of argument that this were indeed the case, would the

bounds thus provided be tight ? Could we then replace (3.0.2) and (3.0.3) by the

stronger limiting equality (3.0.1) ?

Consider a heavy tailed distribution G for which v?n ∼ K lnn is a slowly varying

function of n. In this case, g(y) = 1 and the upper and lower bounds derived earlier

in Section 3.5 and given by Λ?(0)− κ and Λ?(0) respectively, are clearly not tight.

Although this inequality is not sufficient by itself to reach any negative con-

clusion concerning the existence of the lower bound (3.3.7), it strongly suggests

that in cases where G is heavy tailed, the investigation of the buffer asymptotics

will require that we look beyond large deviations techniques. Going back to the

heuristics given in [38], we attribute this to the fact that now buffer exceedances

cannot be explained entirely by large deviations excursions in the arrival stream,

as there is a need to take into consideration the effect of a single customer with a

large workload – the tail of the distribution has become too heavy to neglect such

a customer! Hence, any argument based on large deviations techniques alone is
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bound to fall short. However, we conjecture that (3.0.1) still holds with scaling

h(b) = ln b as specified through (3.2.4) but of course with a different value for γ.

5.4 Alternate Bounds

The suspicion that the failure of Proposition 3.3.3 is linked to the methodology

based on Large Deviations was confirmed in [45] where the issue of devising asymp-

totics for P [q∞ > b] was revisited by means of basic principles; both lower and

upper bound asymptotics were proposed and in some case the latter are tighter

than the ones given here. This section is devoted to a discussion of the results

of [45], inclusive of a comparison with the bounds obtained here.

The approach of [45] is most informative when applied to the subset of distri-

butions with non–exponential tails known as sub–exponential distributions [9, 21]:

An IR+–valued rv X is said to be sub–exponential, written X ∈ S, if

lim
x→∞

P [X +X ′ > x]

P [X > x]
= 2 (5.4.20)

where X ′ is an independent copy of X. The terminology is substantiated by the

fact that under (5.4.20) [21], we have

lim
x→∞

eδxP [X > x] =∞, δ > 0. (5.4.21)

The clue that the bounds obtained thus far could indeed be improved comes

via from the following well–known result of Pakes [50]:

Proposition 5.4.1 Consider a GI/GI/1 queue with i.i.d. service times {µn, n =

1, 2, . . .} distributed according toG, and i.i.d. inter–arrival times {τn, n = 1, 2, . . .}.

Let µ and τ denote the generic service time and inter–arrival time rvs, respectively.
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Assume E [µ] < E [τ ]. If the forward recurrence time µ̂ ∈ S, it holds that the

steady-state queue-size qP∞ ∈ S with

P
[
qP∞ > b

]
∼

E [µ]

E [τ ]− E [µ]
P [µ̂ > b] . (5.4.22)

When applied to the model with instantaneous inputs introduced earlier in

Section 4.7.1, Proposition 5.4.1 states that if â ∈ S,

P [qa∞ > b] ∼
rin

c− rin
P [â > b] (5.4.23)

under the stability condition rin < c.

If σ ∈ S, then a ∈ S with P [a > t] ∼ E [β]P [σ > t] by [21], and standard

arguments now yield ∫ ∞
b

P [a > t] dt ∼ E [β]

∫ ∞
b

P [σ > t] dt (5.4.24)

so that P [â > b] ∼ P [σ̂ > b] and â ∈ S whenever σ̂ ∈ S. Combining these

comments, we immediately get

Proposition 5.4.2 If σ ∈ S and σ̂ ∈ S with rin < c, then qa∞ ∈ S with

P [qa∞ > b] ∼
rin

c− rin
P [σ̂ > b] . (5.4.25)

5.4.1 Improved upper bounds

The expressions (4.7.6) and (4.7.7) readily lead to the bound

q∞ ≤
b∑

n=1

σ̂n + qa∞. (5.4.26)

This observation, when coupled with the asymptotics (5.4.25), forms the basis for

the following asymptotics:
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Proposition 5.4.3 If σ ∈ S and σ̂ ∈ S with rin < c, then

lim sup
b→∞

P [q∞ > b]

P [σ̂ > b]
≤ rin +

rin

c− rin
, (5.4.27)

whence

lim sup
b→∞

1

w?dbe
lnP [q∞ > b] ≤ −(1−W ). (5.4.28)

The details of the derivation of (5.4.27), available in [45], rely on well–known

properties of sub–exponential rvs [21], while (5.4.28) follows directly through (2.3.1)

and (5.3.2) via Lemma 5.3.2. The release rate c does not appear in (5.4.28), thereby

suggesting that (5.4.28) will not always improve on upper asymptotics obtained

previously.

5.4.2 General lower bounds

The following lower bound holds in great generality and is essentially Proposition

3.1 in [45] couched in the notation used here. Details of the calculations are omitted

in the interest of brevity:

Proposition 5.4.4 For any {1, 2, . . .}-valued rv σ, it holds that

−γ?(1−W ) ≤ lim inf
b→∞

1

w?bbc
lnP [q∞ > b] (5.4.29)

with

γ? = inf
y>0

(
(bc− rin + yc+ 1) lim sup

b→∞

v?bbc

v?bbyc

)
. (5.4.30)

In the situation when v? (and therefore by Lemma 5.3.2, w?) is regularly vary-

ing, (5.4.30) lends itself to further simplification, and we have

γ? = inf
y>0

(
bc− rin + y + 1cg(y)

)
. (5.4.31)
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It is noteworthy that in Case II with 0 < R <∞, we have w?t ∼ Rt so that

γ? = inf
y>0

bc− rin + yc+ 1

y
= 1 (5.4.32)

and by Proposition 5.4.4 we get

−R ≤ lim inf
b→∞

1

b
lnP [q∞ > b] . (5.4.33)

Interestingly enough, this lower bound is not as good as the one obtained in Propo-

sition 5.3.1 by applying the general buffer asymptotics based on large deviations

arguments.
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Chapter 6

Examples and Simulation Results

We now proceed to various examples which illustrate the details of each of the three

cases. The examples considered here are constructed by taking the {1, 2, . . .}–

valued rv σ to be of the form σ =st dXe (or σ =st bXc), where X is an integrable

IR+–valued rv with P [X = 0] = 0. The function w?, defined in (5.3.1), is then

given by

w?n = − lnP [X > n] , n = 0, 1, . . . . (6.0.1)

The examples are presented in order of increasing tail in G; in other words

in order of increasing time dependence in the input process. We always assume

ρ < 1, where ρ ≡
rin
c

=
λE [σ]

c
.

6.1 Super–exponential distributions

6.1.1 The Deterministic case

We begin with the simplest case of all, where σ = ζ for some constant ζ in II+.
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Proposition 6.1.1 If σ = ζ , where ζ is a constant in I+, then

lim
b→∞

1

b
lnP [q∞ > b] = −γDeterministic, (6.1.1)

where

γDeterministic =
1

ζ
· f−1

D (ρ) , (6.1.2)

with fD(θ) ≡
θ

eθ − 1
, θ > 0.

Proof. By (5.3.1), we have

w?n =

 0 n ≤ ζ

∞ n > ζ.
(6.1.3)

Hence R = ∞ by Lemma 5.3.2 and (4.3.3), and selecting the auxiliary scaling

vn = n, n = 1, 2, . . ., we have

Λ(θ) = λ
(
eθζ − 1

)
− cθ, θ ∈ IR, (6.1.4)

via Theorem 4.7.1.

As condition GE 3 clearly holds, Proposition 5.3.1 applies, yielding (6.1.1)

with γDeterministic given by (6.1.2).

A plot of f−1
D (ρ) versus ρ is presented in Figure 1, using which γDeterministic may

be calculated for various values of ρ and ζ .

The simulation results for ζ = 4 and 5 displayed in Figure 3, are as predicted by

Proposition 6.1.1. The corresponding values of f−1
D (ρ) and γDeterministic are provided

in Table 6.1 for easy reference.

116



ρ f−1
D (ρ) γDeterministic

ζ = 4 ζ = 5

0.5 1.2564 0.3141 0.2513

0.7 0.6755 0.1689 0.1351

0.9 0.2071 0.0518 0.0414

Table 6.1: γDeterministic
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f−
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Figure 1: f−1
D (ρ) versus ρ
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Figure 2: Tail probability vs. buffer size: Deterministic (ζ = 4)
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6.1.2 The Rayleigh case

A continuous rv X is said to be a Rayleigh rv with parameter α > 0, if

P [X ≤ x] = 1− e−
x2

2α2 , x ≥ 0. (6.1.5)

The rv σ =st dXe is then said to have a discrete Rayleigh distribution with pa-

rameter α > 0, and pmf G = {gr, r = 1, 2, . . .}, where

gr = e−
(r−1)2

2α2 − e−
r2

2α2 , r = 1, 2, . . . . (6.1.6)

Proposition 6.1.2 If G is a discrete Rayleigh distribution with parameter α > 0

then

lim
b→∞

1

b
lnP [q∞ > b] = −γRayleigh, (6.1.7)

where

γRayleigh = f−1
α (ρ), (6.1.8)

and

fα(θ) =

(
eθ − 1

θ
·

1

E [σ]

∞∑
r=0

eθr−
r2

2α2

)−1

. (6.1.9)

Proof. Fix n > 0. By (6.0.1) and (6.1.5), we know that w?n =
n2

2α2
, implying via

Lemma 5.3.2 and (4.3.3), that R =∞. Applying Theorem 4.7.1 with the auxiliary

scaling vn = n, n = 1, 2, . . ., we have

Λ(θ) = −cθ + λ
(
eθ − 1

) ∞∑
r=0

eθr−
r2

2α2 , θ > 0.

Clearly, GE 3 holds, hence the desired result follows via Proposition 5.3.1 upon

noting that

E
[
eσθ
]

= 1 +
(
eθ − 1

) ∞∑
r=0

eθr−
r2

2α2 , θ > 0.
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A closed form expression for γRayleigh is not easily calculated. However, a nu-

merical solution is readily available and is provided in Table 6.2 for select values

of ρ, with α = 2.0 and 6.0. Figure 4 displays plots of f−1
α (ρ) vs. ρ, for α = 2.0 and

6.0. The corresponding simulated results presented in Figure 5, are in accordance

with Proposition 6.1.2.

6.2 Exponential distributions

6.2.1 The geometric case

The geometric pmf G = {gr, r = 1, 2, . . .} of parameter q (0 < q < 1), is given by

gr ≡ P [σ = r] = (1− q)qr−1, r = 1, 2, . . . (6.2.1)

Proposition 6.2.1 If G is a geometric pmf of parameter q, with 0 < q < 1, given

by (6.2.1), then

lim
b→∞

1

b
lnP [q∞ > b] = −γ?Geometric (6.2.2)

where

γGeometric = f−1
G (ρ), (6.2.3)

with

fG(θ) =
θ

eθ − 1
·
1− qeθ

1− q
, 0 < θ < − ln q. (6.2.4)

Proof. Fix n > 0. From (6.0.1) and (6.2.1) we remark that w?n = (− ln q)n,
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ρ γRayleigh = f−1
α (ρ)

α = 2.0 α = 6.0

0.5 0.3267 0.1173

0.7 0.1811 0.0653

0.9 0.0569 0.0206

Table 6.2: γRayleigh
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Figure 4: f−1
α (ρ) versus ρ, α = 2.0 and 6.0.

121



0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.75

−0.7

−0.65

−0.6

−0.55

−0.5

−0.45

−0.4

−0.35

−0.3

γ = 0.3267

ln
(P

[q
∞

 >
 x

])
/ x

x

r
in

 = 0.5,  c = 1
r
in

 = 1.0,  c = 2

Figure 5: Tail probability vs. buffer size: Rayleigh (α = 2)
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implying via Lemma 5.3.2 and (4.3.3), that we are in Case II with R = − ln q.

Applying Theorem 4.7.2 with the auxiliary scaling vn = n, n = 1, 2, . . ., we have

Λ(θ) =


λ ·

eθ − 1

1− qeθ
− cθ if θ < − ln q

∞ if θ ≥ − ln q.

(6.2.5)

Noting that GE 3 is indeed satisfied for this case, we invoke Proposition 5.3.1,

and the result follows through the fact that

E
[
eσθ
]

=


1 +

eθ − 1

1− qeθ
if θ < − ln q

∞ if θ ≥ − ln q.

(6.2.6)

As in the Rayleigh case, an exact solution to (6.2.3) is not available. However

the numerical solution is easily achieved as shown in Figure 7 and Table 6.3 for

q = 0.5 and 0.75. The numerical results plotted in Figure 8 follow the asymptotic

behavior outlined by Proposition 6.2.1.

For values of q close to 1, ln q ∼ q − 1, and we find that

fG(θ) =
θ

eθ − 1
·
1− qeθ

1− q
, 0 < θ < 1− q.

from (6.2.4). Using the notation q′ ≡ 1− q, we have

fG(θ) =
θ

eθ − 1
·
1− (1− q′)eθ

q′

=
θ

q′ (eθ − 1)
·
(
q′eθ −

(
eθ − 1

))
=

θeθ

eθ − 1
−
θ

q′
, 0 < θ < q′.

As 0 < θ < q′ and q′ → 0, we know that eθ ∼ 1 + θ +
θ2

2
and

fG(θ) ∼
θ(1 + θ + θ2

2
)

θ + θ2

2

−
θ

q′
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ρ f−1
G (ρ) 2(1− ρ)1−q

1+q

q = 0.5 q = 0.75 q = 0.5 q = 0.75

0.5 0.3397 0.1433 0.3333 0.1429

0.7 0.2023 0.0859 0.2000 0.0857

0.9 0.0669 0.0286 0.0667 0.0286

Table 6.3: γGeometric
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Figure 7: f−1
G (ρ) versus ρ, q = 0.5 and 0.75.
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Figure 9: Tail probability vs. buffer size: Geometric (q = 0.75)
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=
1 + θ + θ2

2

1 + θ
2

−
θ

q′

= 1 +
θ

2
·
1 + θ

1 + θ
2

−
θ

q′

∼ 1 + θ

(
1

2
−

1

q′

)
, 0 < θ < q′,

or in terms of the original parameter q,

fG(θ) ∼ 1− θ

(
1

1− q
−

1

2

)
, 0 < θ < 1− q. (6.2.7)

By (6.2.7) and (6.2.3) we now have

f−1
G (ρ) ∼ 2(1− ρ) ·

1− q

1 + q
, 0 < ρ < 1. (6.2.8)

This linear relationship between f−1
G (ρ) and ρ is clearly reflected in the plots dis-

played in Figure 7.

6.2.2 The Gamma case

A continuous rv X is said to be a Gamma rv with parameters µ > 0 and a > 0, if

P [X ≤ x] = 1−
Γ(µ, ax)

Γ(µ)
, x ≥ 0 (6.2.9)

where

Γ(η, x) ≡

∫ ∞
x

e−ttη−1dt, η ≥ 0, x > 0 (6.2.10)

is the incomplete Γ–function, and Γ(η) ≡ Γ(η, 0). The pmf G = {gr, r = 1, 2, . . .}

of the rv σ =st dXe is then given by

gr =
1

Γ(µ)
(Γ(µ, a(r − 1))− Γ(µ, ar)) , r = 1, 2, . . . (6.2.11)

and is said to be a discrete Gamma distribution with parameters µ > 0 and a > 0.
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Proposition 6.2.2 If G is a discrete Gamma distribution with parameters µ > 0

and a > 0, then

lim
b→∞

1

b
lnP [q∞ > b] = −γ?Gamma (6.2.12)

where

γ?Gamma = f−1
(µ,a)(ρ), (6.2.13)

and

f(µ,a)(θ) =

(
eθ − 1

θ
·

1

E [σ]
·

1

Γ(µ)

∞∑
r=0

eθrΓ(µ, ar)

)−1

, 0 < θ < a. (6.2.14)

Proof. From (6.0.1) and (6.2.9) we remark that

w?n = ln Γ(µ)− ln Γ(µ, an), n ≥ 0. (6.2.15)

Proceeding with the well-known asymptotics [1]

Γ(η, x) ∼ e−xxη−1(1 + o(x)), η > 0 (x→∞) (6.2.16)

we find that

lim
n→∞

w?n
n

= − lim
n→∞

ln Γ(µ, an)

n

= lim
n→∞

an− (µ− 1) lnn

n

= a. (6.2.17)

Therefore R = a by Lemma 5.3.2 and (4.3.3), and Theorem 4.7.2 applies with the

auxiliary scaling vn = n, n = 1, 2, . . . yielding

Λ(θ) =


−cθ + λ

(
eθ − 1

) ∞∑
r=0

eθr
Γ(µ, ar)

Γ(µ)
if θ < a

∞ if θ > a.

(6.2.18)
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Assumption GE 3 being satisfied, the result now follows through Proposition 5.3.1

upon noting that

E
[
eσθ
]

=


(
eθ − 1

) ∞∑
r=0

eθr
Γ(µ, ar)

Γ(µ)
if θ < a

∞ if θ > a.

(6.2.19)

For the special case when µ = 1 we have

Γ(µ, ax) = e−ax, x > 0,

and the pmf G defined by (6.2.11) is now given by

gr = e−a(r−1)(1− e−a), r = 1, 2, . . . . (6.2.20)

A quick glance at (6.2.1) indicates that G in this case is identical to the geometric

distribution with parameter q = e−a. As expected, both Propositions 6.2.2 and

6.2.1 yield the same asymptotic results.

6.3 Sub–exponential distributions

6.3.1 The Weibull case

A rv X is said to be a Weibull rv with parameters a and β (a > 0 and 0 < β < 1)

if

P [X ≤ x] = 1− e−ax
β

, x ≥ 0. (6.3.1)

The pmf G = {gr, r = 1, 2, . . .} of the rv σ is said to be an (integer–valued)

Weibull distribution with parameters a and β if σ =st dXe, in which case we have

gr = e−a(r−1)β − e−ar
β

, r = 1, 2, . . . (6.3.2)
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Proposition 6.3.1 If G is a discrete Weibull distribution with parameters a and

β (a > 0 and 0 < β < 1), then

lim
b→∞

1

abβ
lnP [q∞ > b] ≤ −γ?Weibull (6.3.3)

where

γ?Weibull = e(1−β) ln(c−rin)+H(β), (6.3.4)

and H(β) = −β ln β − (1 − β) ln(1 − β) denotes the natural entropy of the pmf

(β, 1− β).

Proof. From (6.0.1) and (6.3.1) we have

w?n = anβ , n = 1, 2, . . . .

Hence by Lemma 5.3.2 we conclude that R = 0 and select w? as the auxiliary

scaling.

The fact that the condition C1 holds under scaling w? is easily verified. Select-

ing Z(n) = nα with 1−β < α < 1, we see that the condition C2b is also satisfied.

Therefore Theorem 4.7.3 applies, yielding (5.3.16).

We note that the function w? satisfies (3.2.7), hence it is regularly varying. By

Lemma 3.2.2, we may then select the function h to be the piecewise–continuous

interpolation of w?, i.e. h(b) = abβ , b > 0, and consequently, g(y) = y−β, y > 0.

Finally, noting that the assumption A2 holds with κ = W = 0, we invoke

Proposition 3.4.3, which yields (6.3.3) with

γ?Weibull = sup
y>0

γ?(y), (6.3.5)
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where

γ?(y) = min

(
sup
θ>0

lim inf
n→∞

inf
x>y

(
w?n

h(xn)
(θx− Λ(θ))

)
, Λ?(0)g(y)

)
= min

(
sup

0<θ<1
lim inf
n→∞

inf
x>y

(
nβ

(xn)β
(θ(x+ c− rin))

)
, (c− rin)y

−β

)
= min

(
sup

0<θ<1
θ inf

x>y

(
x+ c− rin

xβ

)
, (c− rin)y

−β

)
= min

(
inf
x>y

(
x+ c− rin

xβ

)
, (c− rin)y

−β

)
. (6.3.6)

Define the mapping T : (0,∞)→ IR+ by

T (x) ≡
x+ c− rin

xβ
, x > 0. (6.3.7)

Differentiating with respect to x gives

dT

dx
(x) =

x(1− β)− β(c− rin)

x1+β

= (1− β)
x− x?

x1+β

with

x? ≡ (c− rin)
β

1− β
. (6.3.8)

As

dT

dx
(x)


> 0 if x > x?

= 0 if x = x?

< 0 if x < x?,

we conclude that

inf
x>y

T (x) =

 T (y) if y > x?

T (x?) if y ≤ x?.
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We may then rewrite (6.3.6) as

γ?(y) = min

(
inf
x>y

T (x), (c− rin)y
−β

)

=

 min
(
(y + c− rin)y−β, (c− rin)y−β

)
if y > x?

min
(
(x? + c− rin)(x

?)−β, (c− rin)y−β
)

if y ≤ x?

=


(c− rin)y−β if y > x?

(c− rin) min

(
(x?)−β

1− β
, y−β

)
if y ≤ x?

where the final step follows via (6.3.8). Reporting this to (6.3.5) we have

γ?Weibull = (c− rin) max

(
sup
y>x?

y−β, sup
0<y≤x?

min

(
(x?)−β

1− β
, y−β

))
= (c− rin) max

(
(x?)−β,min

(
(x?)−β

1− β
, sup

0<y≤x?
y−β
))

= (c− rin) max

(
(x?)−β,

(x?)−β

1− β

)
= (c− rin)

(x?)−β

1− β
,

and the expression (6.3.4) follows directly through (6.3.8).

The alternate upper bound achieved through Proposition 5.4.3 and given by

lim sup
b→∞

1

abβ
lnP

[
qb∞ > b

]
≤ −1, (6.3.9)

improves upon (6.3.3) if γ?Weibull < 1, i.e., if (1 − β) ln(c − rin) +H(β) < 0. This

only occurs in the instance when c− rin < 1, and even then, not for all values of

β in the interval (0, 1).

Applying Proposition 5.4.4, we arrive at the lower bound

−γW
? ≤ lim inf

b→∞

1

abβ
lnP

[
qb∞ > b

]
, (6.3.10)
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with

γW
? = inf

y>0

(
(1 + bc− rin + yc)y−β

)
. (6.3.11)

Explicit expressions for γW
? are given in [45, Section 3].

Tables 6.4 and 6.5 list values taken by the upper and lower bounds for output

rates c = 1, 2. The upper bounds (6.3.3) and (6.3.9) are easily compared; the one

showing to advantage is highlighted. Though the bounds do not coincide for all

values of rin, they are reasonably close, in many of the cases shown.

Figure 10 features the simulation results for selected parameters a = 1 and β =

0.25, with c = 1 and rin = 0.9. The associated upper and lower bounds, available

in Table 6.4, are depicted in the graph. The continuous curve, representing the

quantity of interest, i.e., lnP [q∞ > x] /axβ , is clearly outside the predicted bounds

in the plotted regime, though it does hold out the promise of eventually satisfying

(6.3.9) and (6.3.10).

One possible explanation for this apparent incongruence could be that terms of

the order o(xβ), neglected so far, provide a significant contribution to the asymp-

totics in the plotted range. This argument is validated by the second (dashed)

curve, which converges much faster to the predicted bounds. The second curve

represents the log–tail buffer probability, now scaled by the function v?, which

accounts for smaller order terms, and in the Weibull case takes the form

v?n ∼ anβ − (1− β) lnn, (n→∞). (6.3.12)

This relation follows directly from (2.3.1); its proof is not included.

Similar conclusions may be drawn from the simulation plots depicted in Figures

11 and 12. In Figure 13, we compare the buffer asymptotics for a fixed distribution

G, under identical utilization factors ρ = rin/c, but differing values of rin and c.
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rin β = 0.25 β = 0.5

γ?Weibull γW
U γW

L γ?Weibull γW
U γW

L

0.5 1.04 1.00 1.19 1.41 1.00 1.41

0.7 0.71 1.00 1.09 1.10 1.00 1.20

0.9 0.31 1.00 1.03 0.63 1.00 1.06

Table 6.4: γWeibull, c = 1

rin β = 0.25 β = 0.5

γ?Weibull γW
U γW

L γ?Weibull γW
U γW

L

0.8 2.01 1.00 2.11 1.10 1.00 2.24

1.0 1.75 1.00 2.00 2.00 2.00 2.00

1.4 1.20 1.00 1.26 1.54 1.00 1.58

1.8 0.52 1.00 1.50 0.90 1.00 1.82

Table 6.5: γWeibull, c = 2
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Figure 10: Tail probability vs. buffer size: Weibull (a = 1.0, β = 0.25)
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Figure 11: Tail probability vs. buffer size: Weibull (a = 0.5, β = 0.5)
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Figure 13: Tail probability vs. buffer size: Weibull (a = 1.0, β = 0.25)
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For the example illustrated, it is apparent that the two curves converge to different

limits. This is a distinct departure from the earlier exponential plots, where, under

a fixed distribution G, the dependence of the limiting value γ? on the input and

output rates c and rin, is strictly through their ratio ρ.

6.3.2 The log–normal case

A rv X is said to be a log–normal rv if X =st exp(Y ) where Y is a Gaussian rv

with mean µ and variance δ2. The pmf G = {gr, r = 1, 2, . . .} of the rv σ is

said to be an (integer–valued) log–normal distribution with parameters µ and δ if

σ =st dXe. It is easy to check that

gr = P [r − 1 < X ≤ r]

= Φ

(
1

δ
ln
( r
m

))
− Φ

(
1

δ
ln

(
r − 1

m

))
, r = 1, 2, . . . (6.3.13)

where m ≡ eµ, and Φ is the cumulative distribution function of a Gaussian rv with

zero mean and unit variance.

Proposition 6.3.2 If G is a discrete log–normal distribution with parameters µ

and δ as described above, then

lim inf
b→∞

2δ2

(ln b)2
lnP [q∞ > b] ≤ −γ?Lognormal (6.3.14)

where

γ?Lognormal = c− rin. (6.3.15)

Proof. Fix n = 1, 2, . . .. We begin by noting from (6.3.13) that

P [σ > n] = 1− Φ

(
1

δ
ln
( n
m

))
.
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Hence, by (5.3.1),

w?n = − ln

(
1−Φ

(
ln
(
n
m

)
δ

))
. (6.3.16)

Using the well known asymptotics [1]

1− Φ(n) ∼
1
√

2π
·
e−

n2

2

n
, (n→∞) (6.3.17)

we find that

lim
n→∞

w?n
(lnn)2

= lim
n→∞

− ln

(
1− Φ

(
ln( nm)
δ

))
(lnn)2

= lim
n→∞

(
ln( nm)
δ

)2

2(lnn)2

=
1

2δ2
lim
n→∞

(lnn− lnm)2

(lnn)2

=
1

2δ2
. (6.3.18)

Hence R = W = 0 via Lemma 5.3.2, and definitions (4.3.3) and (5.3.2).

As argued earlier in Section 5.3.3, we may use the auxiliary scaling wn =
(lnn)2

2δ2
.

Clearly, condition C1 holds under this choice of scaling, as does C2, for the selec-

tion Z(n) =
n

lnn
. Therefore Theorem 4.7.3 applies, yielding (5.3.16).

The function wn being regularly varying according to the definition (3.2.7), we

have a ready candidate for the function h in the piecewise–continuous interpolation

of wn, as proved in Lemma 3.2.2. In other words, we select h(b) =
(ln b)2

2δ2
, b > 0,

and g(y) = 1, y > 0.

Finally, verifying that Assumption A2 is also satisfied (with κ = W = 0), we

apply Proposition 3.4.3 which yields (6.3.14) with

γ?Lognormal = sup
y>0

γ?(y), (6.3.19)
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where γ?(y), y > 0, is given by (3.4.30).

Referring to Case 1 in Section 3.5, we note that sup
y>0

γ?(y) has already been

computed for the special case g(y) = 1, y > 0, and is given by (3.5.38), thus

concluding the proof of Proposition 6.3.2.

Proposition 5.4.3 provides the alternate asymptotic upper bound

lim sup
b→∞

2δ2

(ln b)2
lnP

[
qb∞ > b

]
≤ −1, (6.3.20)

which proves tighter than (6.3.14) only if c− rin < 1.

The corresponding lower bound, derived via Proposition 5.4.4, is given by

−bc− rin + 1c ≤ lim inf
b→∞

2δ2

(ln b)2
lnP

[
qb∞ > b

]
. (6.3.21)

A striking difference from the cases observed so far, is the fact that the limits

γ?Lognormal and γL? show no dependence on the parameters (µ, δ) characterizing the

lognormal distribution G.

In the case c − rin < 1, we observe that the bounds given by (6.3.20) and

(6.3.21) coincide, yielding

lim
b→∞

1

(ln b)2
lnP

[
qb∞ > b

]
= −

1

2δ2
. (6.3.22)

The limit (6.3.22) is always true when c = 1; the calculated bounds for the case

c = 2 are listed in Table 6.6.

Figures 14, 15 and 16 present the tail buffer asymptotics when G is lognormal

with parameters 1.414 and 1.732, for c = 1, 2 and varying values of rin.

Learning from our experience in the Weibull case, we take care to plot the log–

tail probability lnP [q∞ > x] using the exact scaling v?, instead of its asymptotic
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rin γ?Lognormal γL
U γL

L

0.8 1.2 1.0 2.0

1.0 1.0 1.0 1.0

1.4 0.6 1.0 1.0

1.8 0.2 1.0 1.0

Table 6.6: γLognormal, c = 2
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Figure 14: Tail probability vs. buffer size: Lognormal (δ = 1.414)
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equivalent w, where

v?n ∼
1

2

(
lnn

δ

)2

− lnn+ ln(lnn) + ln(lnn− δ2) (n→∞). (6.3.23)

The convergence of the plots to their predicted limiting values however remains

slow. This could very possibly be due to neglected terms of still smaller order, and

perhaps even constants, which gain importance when the dominating scaling (in

this case (lnn)2) increases to infinity at a very slow rate.

6.3.3 The Pareto case

A rv X is said to be Pareto with parameters A,α > 0,

P [X ≤ x] = 1−
( x
A

)−α
, x ≥ A. (6.3.24)

The pmf G = {gr, r = 1, 2, . . .} of the rv σ is said to be an (integer–valued) Pareto

distribution with parameter α > 0 if σ =st

⌊
X
A

⌋
, in which case we have

P [σ > r] = P

[⌊
X

A

⌋
> r

]
= P [X ≥ A(r + 1)]

= (r + 1)−α r = 1, 2, . . . , (6.3.25)

and

gr = P [σ = r] = r−α − (r + 1)−α, r = 1, 2, . . . . (6.3.26)

Having defined the distribution, we note that the requirement E [σ] <∞ is equiv-

alent to the constraint α > 1.

Proposition 6.3.3 If G is a discrete Pareto distribution with parameter α, (α >

1), then

lim inf
b→∞

1

(α− 1) ln b
lnP [q∞ > b] ≤ −γ?Pareto (6.3.27)
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where

γ?Pareto = (c− rin)−
1

α− 1
. (6.3.28)

Proof. Fix n = 1, 2, . . ., and note from (6.3.25) that

w?n = α lnn. (6.3.29)

Therefore, by Lemma 5.3.2, and definitions (4.3.3) and (5.3.2), we conclude that

R = 0, and W = α−1. We mention briefly that our constraint α > 1 is seconded

by Lemma 5.3.1, which requires that W < 1.

Referring to Lemma 5.3.2 gives

lim
n→∞

v?n
w?n

= 1− α−1,

leading to the choice of wn = (1−W )w?n = (α− 1) lnn as the auxiliary scaling.

Noting that condition C1 is trivially satisfied, while C2 holds for the selection

Z(n) =
n

(lnn)1/2
, we derive (5.3.16) via Theorem 4.7.3.

A quick glance at (3.2.7) verifies that wn is indeed regularly varying, and

invoking Lemma 3.2.2 as before, we choose h(b) = (α − 1) ln b, b > 0, and

g(y) = 1, y > 0.

As Assumption A2 is satisfied (with κ = (α− 1)−1), Proposition 3.4.3 applies,

yielding (6.3.27) with

γ?Pareto = sup
y>0

γ?(y),

and (6.3.28) follows by (3.5.38).
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Of course, the bound derived in Proposition 6.3.3 is entirely superfluous if

c− rin < (α− 1)−1, as had been remarked upon earlier in Section 5.3.3.

The alternate upper bound provided by Proposition 5.4.3 and given by

lim sup
b→∞

1

(α− 1)(ln b)
lnP

[
qb∞ > b

]
≤ −1, (6.3.30)

fares better than (6.3.27) only if (α− 1)(c− rin) < α.

By Proposition 5.4.4 we have the lower bound

γP? ≤ lim inf
b→∞

1

(α− 1)(ln b)
lnP

[
qb∞ > b

]
, (6.3.31)

with

γP? = inf
y>0
b1 + c− rin + yc = bc− rin + 1c. (6.3.32)

We note that the bounds provided by (6.3.30) and (6.3.31) are tight under the

condition c− rin < 1, in which case

lim
b→∞

1

(α− 1)(ln b)
lnP

[
qb∞ > b

]
= −1. (6.3.33)

Figures 17–19 present the simulated tail buffer probabilities for G Pareto with

α = 1.5 and 2.5 under the scaling

v?n ∼ (α− 1) lnn, (n→∞). (6.3.34)

As in the Lognormal case (and probably for similar reasons), the simulation

plots do not provide conclusive evidence either verifying or denying the derived

bounds.

6.4 Discussion

The difference in buffer asymptotics for heavy–tailed, sub–exponential distribu-

tions versus their lighter–tailed, exponential counterparts extends beyond their
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Table 6.7: γPareto, c = 2
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Figure 17: Tail probability vs. buffer size: Pareto (α = 2.5)
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obviously different scalings. While the utilization ρ = rin/c is of prime importance

in predicting the tail probability behavior for exponential and super–exponential

distributions, it plays a relatively minor role when G is sub–expon–ential. Instead,

the governing factor in this case seems to be the difference c − rin. This could

perhaps be attributed to the bursty nature of heavy–tailed processes which causes

the buffer to grow extremely rapidly in size upon the arrival of a single burst.

In such a scenario, the rate at which the queue empties is of great significance.

Light–tailed processes in contrast, present a more even supply of packets to the

buffer; therefore it is reasonable to expect that the average time that the server is

busy, i.e., the utilization ρ, plays a key role in the system dynamics.

As the tail of the distribution G increases in weight, the rate at which the

leading term of the scaling v? increases to infinity becomes progressively slower,

and terms of smaller order begin to gather importance. Eventually, in the very

heavy–tailed Lognormal and Pareto cases, we expect even the constant terms to

prove significant in establishing reasonably accurate asymptotics. This could very

well imply that results of the kind (1.3.3) are truly relevant only at impractically

large buffer sizes and that we would be better occupied deriving asymptotics of

the form (1.3.2).

Finally, a word of caution regarding simulating heavy–tailed processes: With

increasing correlations, the variance exhibited by the process also increases [Propo-

sition 2.3.4]. In fact, when G is Pareto with 1 < α < 2, the generated process is

LRD and exhibits infinite variance [Corollary 2.3.1]. Different simulation runs for

the same set of parameters could now display vastly different behavior! Longer

simulation runs then become imperative in order to ensure meaningful results.
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Chapter 7

Concluding Remarks

In Chapter 1 the M |G|∞ process was proposed as a versatile model for packet

traffic. We have since examined its various properties in careful detail, paying

particular attention to its rich correlation structure. In an effort to understand the

dynamics of a system supporting such traffic, the buffer asymptotics of a single–

server queue fed by an M |G|∞ traffic stream have been investigated and results

of the form (1.3.3) derived, using large deviations techniques.

For a large class of distributions, we have seen that the asymptotics take the

compact form

P [q∞ > b] ∼ P [σ̂ > b]γ
?

(b→∞), (7.0.1)

implying thereby that q∞ and σ̂ belong to the same distributional class as charac-

terized by tail behavior.

Sometimes, in lieu of (1.3.3), large deviations techniques yield only weaker

asymptotics of the form (3.0.2) and (3.0.3). This situation typically occurs when

σ is heavy–tailed, in which case large deviations excursions are only one of several

causes for buffer exceedances. While the basic functional form of the tail proba-

bility is still preserved, it now becomes necessary to pursue alternate methods in
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order to deduce γ?.

Nonetheless, knowledge of the functional form in itself offers valuable insights

into the complex and subtle impact that heavy correlations have on the tail prob-

ability P [q∞ > b].

Extension to finite–buffered systems: The asymptotics already indicate that

the tail probabilities P [q∞ > b] display a sub–exponential behavior in the case of

heavily–correlated traffic, in sharp contrast to the geometric decay that is usually

observed for Markovian input streams. The implications for the corresponding

finite–buffered system would then be that lightly correlated traffic gains more (in

terms of a decrease in cell-loss) by increasing the buffer size, than does traffic

with heavy correlations. This “buffer ineffectiveness ”phenomenon has already

been observed [28], [32], and clearly indicates the wisdom of improving system

performance by multiplexing streams and by investing in faster servers rather than

larger buffers.

Parsimonious modeling: In [41] and [42], Leland et al. have stressed the need

for parsimonious models for self–similar traffic, using only the Hurst parameter

to typify long–range dependence. However, a comparison of results derived earlier

with those from [49] clearly points to the inefficacy of such a model in characterizing

buffer asymptotics.

Indeed, in [49] the input stream to the multiplexer was modeled as a fractional

Gaussian noise process exhibiting long–range dependence (in fact, self–similarity),

and the buffer asymptotics displayed Weibull–like characteristics. On the other

hand, by the results described in this thesis, an M |G|∞ input process with a

Weibull service time also yields Weibull–like buffer asymptotics although the input

process is now short–range dependent. Hence, the same asymptotic buffer behavior
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can be induced by two vastly different input streams, one long–range dependent

and the other short–range dependent! To make matters worse, if the pmf G were

selected to be Pareto instead of Weibull, the input process would be long–range

dependent, in fact asymptotically self–similar, but the buffer distribution would

now exhibit Pareto–like asymptotics.

This comparison clearly reveals the insufficiency of the Hurst parameter in

characterizing buffer asymptotics. Furthermore, buffer sizing cannot be adequately

determined by appealing solely to the short versus long–range dependence char-

acterization of the input model used, be it of the M |G|∞ type or otherwise. Of

course, long–range dependence (and its close cousin, self–similarity) are deter-

mined by second–order properties of the input process, while asymptotics of the

form (3.0.1) invoke much finer probabilistic properties. The finiteness of E [σ2]

(needed in (1.2.2)) is obviously a poor marker for predicting the behavior of the

sequence {v?t , t = 1, 2, . . .} (which drives (3.0.1)).

Utilization versus Difference : Even without precisely identifying the constant

γ?, the very form taken by the limiting log–moment function Λ clearly delineates

the heavy and light tailed cases. Indeed, the shift in its explicit dependence on

the input and output rates rin and c, from ρ = rin/c when G is exponential to

∆ = c − rin when G is sub–exponential, already provides some understanding of

the difference in the system dynamics for the two cases. The traditional role of

the utilization factor in defining the load in a network must now be re-evaluated

in the context of highly correlated traffic.

Having said this, we now briefly visit existing results on the buffer asymptotics

in question. Many of the results are surprisingly accurate. The fact that not one of

these has been derived via large deviations techniques justifies our earlier intuition
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that the forces at play extend beyond the realm of large deviations theory.

7.1 Alternate asymptotics

The following result, independently derived by Jelenkovic and Lazar [33], and

Daniels and Blondia [14], for a continuous–time M |G|∞ system, applies to the

Pareto case. The proofs in both cases rely heavily on Karamata’s Tauberian/Abelian

theorems.

Proposition 7.1.1 If G is regularly varying with non–integral exponent α > 1,

and c = 1, the asymptotics

lim
b→∞

P [q∞ > b]∫∞
b/ρ

P [σ > u] du
=

λ

1− ρ
(7.1.1)

hold for ρ = λE [σ] < c.

When extrapolated to the discrete–time M |G|∞ system with G Pareto, the

asymptotics described above, translate to

lnP [q∞ > b] ∼ −(1− α) ln

(
b

ρ

)
+ ln

(
λ

(1− ρ)(1− α)

)
. (7.1.2)

Figure 20 displays excellent agreement between the asymptotics described above

and the simulated results (denoted by the points), even at smaller time scales.

A more general result due to Likhanov [44] provides bounds for the tail prob-

ability P [q∞ > b], which though not quite tight, are remarkably close. The proof

involves viewing the input process as a sum of two processes, one of which con-

tributes the long–range behavior, while the other, comprising of the bulk of the

inputs, provides the short–range characteristics. Unlike the earlier Proposition, the
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Figure 20: Pareto (α = 1.5)

result applies for all values of c, and although derived specifically for the Pareto

case can be extended to other cases as well. Work in this direction is currently in

progress.

7.2 Directions for future research

The diverse queueing behavior and rich correlation structure demonstrated here

confirms the versatility of M |G|∞ inputs as network traffic models. However,

several issues important to network design as well as dynamic control have yet

to be addressed. Notable amongst these are the first order statistics evident in

traffic, and the computation of cell–loss probabilities and buffer dynamics for finite
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buffered systems.

The heavy correlations inherent in network traffic have occupied most re-

searchers to the degree that first–order characteristics have been side–lined. These

have a crucial effect on buffer dynamics and must be accounted for [28,57]. As far

as the M |G|∞ process is concerned, its Poisson marginals may be suitably adapted

by a simple transformation described in [39] and [40].

There are researchers who believe that the solutions to many modeling ques-

tions lie in the underlying physical mechanism that causes the long–range depen-

dence. On the opposite end of the spectrum, there are those who claim that in

the scramble to provide accurate models for LRD traffic, the practical significance

of these representations has been overlooked. While it is important for a model

to provide a close fit to the data, the superiority of a model is decided by the

quality of decisions it makes in the regime of interest. The fact that buffers in real

systems are finite in size creates a very different scenario from the one studied in

this thesis, by setting a hard limit on the memory of the system. The system in the

latter case is reset only when the the buffer is empty; in the former case however,

this happens when the buffer is empty or full. Predictably then, correlations for

lag greater than the buffer size will be of little consequence in the finite–queued

system. This finite “correlation horizon ” [28] explains why literature on Markov

modeling reports good performance prediction for finite buffer systems even when

input traffic streams are correlated over many time–scales [18, 58].

In conclusion, one can only state the very obvious, namely, that the problem of

modeling network traffic when time dependencies are either observed or suspected

must be approached with caution.
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Appendix A

A.1 Proof of Proposition 2.1.1

We present the proof of Proposition 2.1.1 in the form of the two following Lemmas.

Throughout we employ the notation of Section 2.1.3.

Lemma A.1.1 For each pair (Tn, Qn) in (Tn,Qn), n = 1, 2, . . . , it holds that

lnE

[
exp

(
n∑
i=1

θib
(0)
ti

)]
= lnE

[
exp

(
b∑
j=1

n∑
r=1

Θr1 [σ0,j ∈ Ir]

)]

where Θr, r = 1, 2, . . . , n, is given by (2.1.11).

Proof. Using (2.1.3) we note that

n∑
i=1

θib
(0)
ti =

b∑
j=1

n∑
i=1

θi1 [σ0,j > ti]

=
b∑
j=1

n∑
i=1

θi1

[
σ0,j ∈

n⋃
r=i

Ir

]

=
b∑
j=1

n∑
i=1

θi

n∑
r=i

1 [σ0,j ∈ Ir]

=
b∑
j=1

n∑
r=1

(
r∑
i=1

θi

)
1 [σ0,j ∈ Ir]
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and the result follows.

Lemma A.1.2 For each pair (Tn, Qn) in (Tn,Qn), n = 1, 2, . . . , we have

lnE

[
exp

(
n∑
i=1

θib
(a)
ti

)]
= λE [σ]

n∑
j=1

Φj(Tn, Qn),

where Φj(Tn, Qn), j = 1, 2, . . . , n, is given by (2.1.12).

Proof. We attempt to write the exponent as a sum of independent rvs. To do

so we use (2.1.4) to get

b
(a)
ti =

ti∑
s=1

βs∑
m=1

1 [σs,m > ti − s]

=
i−1∑
k=0

∑
s∈Ik

βs∑
m=1

1 [σs,m > ti − s] , i = 1, 2, . . . , n

upon expressing the interval (0, ti] as
i−1⋃
k=0

Ik. This gives

n∑
i=1

θib
(a)
ti =

n∑
i=1

θi

(
i−1∑
k=0

∑
s∈Ik

βs∑
m=1

1 [σs,m > ti − s]

)

=
n−1∑
k=0

∑
s∈Ik

βs∑
m=1

n∑
i=k+1

θi1 [σs,m > ti − s]

=
n−1∑
k=0

∑
s∈Ik

βs∑
m=1

Uk,s,m (A.1.1)

where

Uk,s,m ≡
n∑

i=k+1

θi1 [σs,m > ti − s]
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=
n∑

i=k+1

θi1

[
σs,m + s ∈

n⋃
j=i

Ij

]

=
n∑

i=k+1

θi

n∑
j=i

1 [σs,m + s ∈ Ij ]

=
n∑

j=k+1

(
j∑

i=k+1

θi

)
1 [σs,m + s ∈ Ij ]

=
n∑

j=k+1

(Θj −Θk)1 [σs,m + s ∈ Ij ] .

Recall that the rvs {σs,m, m = 1, 2, . . . ; s = 1, 2, . . .} are i.i.d. with common

distribution G. Hence, it follows from (A.1.1) that

E

[
exp

(
n∑
i=1

θib
(a)
ti

)]
=

n−1∏
k=0

∏
s∈Ik

E

[
βs∏
m=1

eUk,s,m

]

=
n−1∏
k=0

∏
s∈Ik

E

(exp

(
n∑

j=k+1

(Θj −Θk)1 [σ + s ∈ Ij]

))βs


=
n−1∏
k=0

∏
s∈Ik

E

[(
χk,s

)βs]

=
n−1∏
k=0

∏
s∈Ik

eλ(χk,s−1), (A.1.2)

with

χk,s ≡ E

[
exp

(
n∑

j=k+1

(Θj −Θk)1 [σ + s ∈ Ij]

)]
, (A.1.3)

for k = 0, 1, . . . , n − 1, and s in Ik, and upon using the independence of the rvs

{σs,m, m = 1, 2, . . . ; s = 1, 2, . . .} and {βs, s = 1, 2, . . .}, together with the fact

that the rv βs is Poisson with rate λ. Simplifying (A.1.3) we have

χk,s = 1−P [σ + s > tk+1] +
n∑

j=k+1

eΘj−ΘkP [σ + s ∈ Ij ]

= 1−
n∑

j=k+1

P [σ + s ∈ Ij] +
n∑

j=k+1

eΘj−ΘkP [σ + s ∈ Ij ]
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= 1 +
n∑

j=k+1

(
eΘj−Θk − 1

)
P [σ + s ∈ Ij ] . (A.1.4)

Combining (A.1.2) and (A.1.4) gives

E

[
exp

(
n∑
i=1

θib
(a)
ti

)]
= exp

(
λ

n−1∑
k=0

∑
s∈Ik

(χk,s − 1)

)

= exp

(
λ

n−1∑
k=0

n∑
j=k+1

(
eΘj−Θk − 1

)∑
s∈Ik

P [σ + s ∈ Ij ]

)

= exp

(
λE [σ]

n∑
j=1

Φj(Tn, Qn)

)
(A.1.5)

where

Φj(Tn, Qn) =
1

E [σ]

j−1∑
k=0

(
eΘj−Θk − 1

)∑
s∈Ik

P [σ + s ∈ Ij] (A.1.6)

for j = 1, . . . , n.

All that remains to be done now, is to rewrite (A.1.6) in order to show its

equivalence to representation (2.1.12): Using (2.1.6) to expand the summation in

(A.1.6), we have

∑
s∈Ik

P [σ + s ∈ Ij ] =

tk+1∑
s=tk+1

P [tj < σ + s ≤ tj+1]

=

tk+1∑
s=tk+1

P [σ + s ≤ tj+1]−P [σ + s ≤ tj] .

The fact that k < j in (A.1.6) ensures that tk+1 ≤ tj , thus allowing the previous

expression to be re–organized using the substitution u = tj+1 − s + 1 in the first

summation, and u = tj − s+ 1 in the second. This gives

∑
s∈Ik

P [σ + s ∈ Ij] =

tj+1−tk∑
u=tj+1−tk+1+1

P [σ ≤ u− 1]−

tj−tk∑
u=tj−tk+1+1

P [σ ≤ u− 1]

=
∞∑

u=tj+1−tk+1+1

P [σ < u]−
∞∑

u=tj+1−tk+1

P [σ < u]
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−
∞∑

u=tj−tk+1+1

P [σ < u] +
∞∑

u=tj−tk+1

P [σ < u]

=

tj+1−tk∑
u=tj−tk+1

P [σ < u]−

tj+1−tk+1∑
u=tj−tk+1+1

P [σ < u] .

Finally, using the substitution r = u+ tk in the first summation and r = u+ tk+1

in the second, we conclude that

∑
s∈Ik

P [σ + s ∈ Ij ] =

tj+1∑
r=tj+1

P [σ < r − tk]−

tj+1∑
r=tj+1

P [σ < r − tk+1]

=
∑
r∈Ij

P [tk < r − σ]−P [tk+1 < r − σ]

=
∑
r∈Ij

P [σ ≥ r − tk+1]−P [σ ≥ r − tk]

for k < j. Upon expressing σ in terms of σ̂ via (2.1.1), we have

1

E [σ]

∑
s∈Ik

P [σ + s ∈ Ij ] =

tj+1∑
r=tj+1

P [σ̂ + tk+1 = r]−P [σ̂ + tk = r]

= P [σ̂ + tk+1 ∈ Ij ]−P [σ̂ + tk ∈ Ij] (A.1.7)

for j = 1, 2, . . . , n and k = 0, 1, . . . , j − 1. Incorporating (A.1.7) in (A.1.6) gives

Φj(Tn, Qn) =

j−1∑
k=0

(
eΘj−Θk − 1

) (
P [σ̂ + tk+1 ∈ Ij ]−P [σ̂ + tk ∈ Ij]

)
=

j∑
k=1

(
eΘj−Θk−1 − 1

)
P [σ̂ + tk ∈ Ij]

−
j−1∑
k=0

(
eΘj−Θk − 1

)
P [σ̂ + tk ∈ Ij ]

=
(
1− eΘj

)
P [σ̂ ∈ Ij ] +

j∑
k=1

eΘj−Θk
(
eθk − 1

)
P [σ̂ + tk ∈ Ij ]

which in conjunction with (A.1.5) concludes the proof.
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A.2 Proof of Proposition 2.2.1

Fix n = 1, 2, . . . , Tn in Tn and Qn in Qn. We establish Proposition 2.2.1 through

the following series of Lemmas.

Lemma A.2.1 For every h = 0, 1, . . . , we have

L?(Tn ⊕ h,Qn)−L
?(Tn, Qn)

= λE [σ]
n∑
j=1

(
1− eΘj

) (
P [σ̂ ∈ Ij ⊕ h]−P [σ̂ ∈ Ij ]

)

+ lnE

exp

 b?0∑
j=1

n∑
r=1

Θr1
[
σ?0,j ∈ Ir ⊕ h

]
− lnE

exp

 b?0∑
j=1

n∑
r=1

Θr1
[
σ?0,j ∈ Ir

] . (A.2.1)

Proof. Fix h = 0, 1, . . .. Using (2.1.13) to compute L?(Tn ⊕ h,Qn), we have

L?(Tn ⊕ h,Qn) = λE [σ]
n∑
j=1

Φj(Tn ⊕ h,Qn)

+ lnE

exp

 b?0∑
j=1

n∑
r=1

Θr1
[
σ?0,j ∈ Ir ⊕ h

] (A.2.2)

with

Φj(Tn ⊕ h,Qn)

=
(
1− eΘj

)
P [σ̂ ∈ Ij ⊕ h] +

j∑
k=1

eΘj−Θk
(
eθk − 1

)
P [σ̂ + tk + h ∈ Ij ⊕ h]

=
(
1− eΘj

)
P [σ̂ ∈ Ij ⊕ h] +

j∑
k=1

eΘj−Θk
(
eθk − 1

)
P [σ̂ + tk ∈ Ij ]

= Φj(Tn, Qn) +
(
1− eΘj

) (
P [σ̂ ∈ Ij ⊕ h]−P [σ̂ ∈ Ij]

)
, j = 1, . . . , n.
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Using this last relation to rewrite (A.2.2), we have

L?(Tn ⊕ h,Qn)

= λE [σ]
n∑
j=1

(
Φj(Tn, Qn) +

(
1− eΘj

) (
P [σ̂ ∈ Ij ⊕ h]−P [σ̂ ∈ Ij ]

))

+ lnE

exp

 b?0∑
j=1

n∑
r=1

Θr1
[
σ?0,j ∈ Ir ⊕ h

]
= L?(Tn, Qn)− lnE

exp

 b?0∑
j=1

n∑
r=1

Θr1
[
σ?0,j ∈ Ir

]
+λE [σ]

n∑
j=1

(
1− eΘj

) (
P [σ̂ ∈ Ij ⊕ h]−P [σ̂ ∈ Ij ]

)

+ lnE

exp

 b?0∑
j=1

n∑
r=1

Θr1
[
σ?0,j ∈ Ir ⊕ h

] ,
and the result is established.

Lemma A.2.2 Proposition 2.2.1 (i) implies Proposition 2.2.1 (ii).

Proof. Fix n = 1, 2, . . .. Under Proposition 2.2.1 (i), we can rewrite (A.2.1) as

lnE

exp

 b?0∑
j=1

n∑
r=1

Θr1
[
σ?0,j ∈ Ir ⊕ h

]
− lnE

exp

 b?0∑
j=1

n∑
r=1

Θr1
[
σ?0,j ∈ Ir

]
= λE [σ]

n∑
j=1

(
1− eΘj

) (
P [σ̂ ∈ Ij]−P [σ̂ ∈ Ij ⊕ h]

)
(A.2.3)

for every h = 0, 1, . . .. Let h go to infinity. This forces

P [σ̂ ∈ Ij ⊕ h]
∣∣∣
h=∞

= 0, j = 1, 2, . . . , n
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and

b?0∑
j=1

n∑
r=1

Θr1
[
σ?0,j ∈ Ir ⊕ h

]∣∣∣∣∣∣
h=∞

= 0,

thus obliterating any effect of the initial conditions, and (A.2.3) in the limit be-

comes

lnE

exp

 b?0∑
j=1

n∑
r=1

Θr1
[
σ?0,j ∈ Ir

]
= λE [σ]

n∑
j=1

(
eΘj − 1

)
P [σ̂ ∈ Ij] . (A.2.4)

We conclude the proof by recognizing the equivalence of (A.2.4) and Proposition

2.2.1 (ii) via (2.1.9).

Lemma A.2.3 Proposition 2.2.1 (ii) implies Proposition 2.2.1 (iii).

Proof. Assume that Proposition 2.2.1 (ii) holds. Then, as noted in the proof

of the previous lemma, (A.2.4) holds through (2.1.9). This allows (2.1.13) to be

modified to

L?(Tn, Qn) = λE [σ]
n∑
j=1

(
Φj(Tn, Qn) +

(
eΘj − 1

)
P [σ̂ ∈ Ij ]

)
= λE [σ]

n∑
j=1

j∑
k=1

eΘj−Θk
(
eθk − 1

)
P [σ̂ + tk ∈ Ij] (A.2.5)

= λE [σ]
n∑
k=1

(
eθk − 1

) n∑
j=k

eΘj−ΘkP [σ̂ + tk ∈ Ij] ,

with (A.2.5) following on comparison with (2.1.12). The final step is achieved by

interchanging the order of summation and proves Proposition 2.2.1 (iii).
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We conclude with Lemma A.2.4 which provides the final link in proving Propo-

sition 2.2.1.

Lemma A.2.4 Proposition 2.2.1 (iii) implies Proposition 2.2.1 (i).

Proof. Fix n = 1, 2, . . . and h = 0, 1, . . .. The result follows directly through the

observation that

P [σ̂ + tk + h ∈ Ij ⊕ h] = P [tj + h < σ̂ + tk + h < tj+1 + h]

= P [σ̂ + tk ∈ Ij ] ,

for j = k, k + 1, . . . , n; k = 1, 2, . . . , n.

A.3 Proof of Proposition 2.2.2

Fix n, m = 1, 2, . . .. Consider sequences Un ≡ {ui, i = 1, 2, . . . , n} in T n and

Vm ≡ {vj , j = 1, 2, . . . ,m} in T m, and sequences Ψn ≡ {ψi, i = 1, 2, . . . , n} in Qn

and Φm ≡ {φj, j = 1, 2, . . . ,m} in Qm.

Define

L?
(
(Un,Ψn), (Vm,Φm)

)
≡ lnE

[
exp

(
n∑
i=1

ψib
?
ui

+
m∑
j=1

φjb
?
vj

)]
. (A.3.1)

In order to prove that the process {b?t , t = 0, 1, . . .} is strongly mixing via the

property described by (2.2.7), it suffices to prove the following Lemma.
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Lemma A.3.1 For all pairs (Un, Vm) in (T n, T m) and (Ψn,Φm) in (Qn,Qm), we

have

lim
h→∞
L?
(
(Un,Ψn), (Vm ⊕ h,Φm)

)
= L?(Un,Ψn) + L?(Vm,Φm),

where h = 1, 2, . . . , and the function L? is as defined in (2.1.7).

Proof. Fix h = 1, 2, . . . , Un in T n, Vm in T m and Ψn in Qn,Φm in Qm. Using

the notation

∆m+n = {δi, i = 1, 2, . . . ,m+ n}, δi =

 ψi 1 ≤ i ≤ n

φi−n n+ 1 ≤ i ≤ n+m,

and

Wm+n = {wi, i = 1, 2, . . . ,m+ n}, wi =

 ui 1 ≤ i ≤ n

vi−n + h n+ 1 ≤ i ≤ n+m,

we rewrite (A.3.1) in the more familiar form

L?
(
(Un,Ψn), (Vm ⊕ h,Φm)

)
= L?(Wm+n,∆m+n). (A.3.2)

By the stationarity of the process {b?t , t = 0, 1, . . .}, Proposition 2.2.1 (iii) applies

to both pairs (Un, Vm) and (Ψn,Φm), yielding

L?(Un,Ψn) = λE [σ]
n∑
k=1

(
eψk − 1

) n∑
j=k

eYj−YkP [uj < σ̂ + uk ≤ uj+1] (A.3.3)

and

L?(Vm,Φm) = λE [σ]
m∑
k=1

(
eφk − 1

) m∑
j=k

ePj−PkP [vj < σ̂ + vk ≤ vj+1] (A.3.4)

where Yj ≡
n∑
i=1

ψi, j = 1, 2, . . . , n, Pj ≡
n∑
i=1

φi, j = 1, 2, . . . ,m, and un+1 = vm+1 =

∞ by convention.

162



In order to write a similar equation for the pair (Wm+n,∆m+n), we require that

Wm+n be an element of T n+m, a condition always fulfilled when h > un. In that

case we have

L?(Wm+n,∆m+n)

= λE [σ]
n+m∑
k=1

(
eδk − 1

) n+m∑
j=k

eDj−DkP [wj < σ̂ + wk ≤ wj+1] (A.3.5)

where

Dj ≡
j∑
i=1

δi =

 Yj 1 ≤ j ≤ n

Yn + Pj−n n+ 1 ≤ j ≤ n+m

and wn+m+1 =∞.

We now attempt to evaluate lim
h→∞
L?(Wm+n,∆m+n). For this purpose, we split

the double summation in (A.3.5) into three component sums, namely

lim
h→∞
L?(Wm+n,∆m+n)

= λE [σ] lim
h→∞

n+m∑
k=1

n+m∑
j=k

Aj,k

= λE [σ] lim
h→∞

(
n∑
k=1

n∑
j=k

Aj,k +
n∑
k=1

n+m∑
j=n+1

Aj,k +
n+m∑
k=n+1

n+m∑
j=k

Aj,k

)
(A.3.6)

where

Aj,k ≡ eDj−Dk
(
eδk − 1

)
P [wj < σ̂ + wk ≤ wj+1]

for j = k, . . . n+m; k = 1, . . . n+m.

When 1 ≤ k ≤ j ≤ n, we have

Aj,k =

 eYj−Yk
(
eψk − 1

)
P [uj < σ̂ + uk ≤ uj+1] 1 ≤ j < n

eYn−Yk
(
eψk − 1

)
P [un < σ̂ + uk ≤ v1 + h] j = n.

(A.3.7)
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For the region 1 ≤ k ≤ n < j ≤ n+m, we have

Aj,k = eYn+Pj−n−Yk
(
eψk − 1

)
P [vj−n + h < σ̂ + uk ≤ vj+1−n + h]

= eYn+Pj′−Yk
(
eψk − 1

)
P [vj′ + h < σ̂ + uk ≤ vj′+1 + h] (A.3.8)

where j′ = j − n. Finally, when n+ 1 ≤ k ≤ j ≤ n+m,

Aj,k = ePj−n−Pk−n
(
eφk−n − 1

)
P [vj−n + h < σ̂ + vk−n + h ≤ vj+1−n + h]

= ePj′−Pk′
(
eφk′ − 1

)
P [vj′ < σ̂ + vk′ ≤ vj′+1] (A.3.9)

using the substitution j′ = j − n and k′ = k − n.

We report (A.3.7), (A.3.8), and (A.3.9) in each of the components of (A.3.6)

and let h go to infinity. We first find

lim
h→∞

n∑
k=1

n∑
j=k

Aj,k

=
n∑
k=1

n−1∑
j=k

eYj−Yk
(
eψk − 1

)
P [uj < σ̂ + uk ≤ uj+1]

+ lim
h→∞

n∑
k=1

eYn−Yk
(
eψk − 1

)
P [un < σ̂ + uk ≤ v1 + h]

=
1

λE [σ]
L?(Un,Ψn) (A.3.10)

with the help of (A.3.3). Next,

lim
h→∞

n∑
k=1

n+m∑
j=n+1

Aj,k

= lim
h→∞

n∑
k=1

m∑
j′=1

eYn+Pj′−Yk
(
eψk − 1

)
P [vj′ < σ̂ + uk − h ≤ vj′+1]

= 0, (A.3.11)

while

lim
h→∞

n+m∑
k=n+1

n+m∑
j=k

Aj,k
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= lim
h→∞

m∑
k′=1

n∑
j′=k′

ePj′−Pk′
(
eφk′ − 1

)
P [vj′ < σ̂ + vk′ ≤ vj′+1]

=
1

λE [σ]
L?(Vn,Φn) (A.3.12)

by consulting (A.3.4).

Combining (A.3.10), (A.3.11) and (A.3.12) with (A.3.6), we conclude that

lim
h→∞
L?(Wm+n,∆m+n) = L?(Un,Ψn) + L?(Vn,Φn),

and the required result follows on comparison with (A.3.2).

A.4 Proof of Proposition 2.2.3

We begin by proving the following lemma which essentially computes L?(Hn, Qn)

for Hn = {1, 2, . . . , n} and Qn in Qn for each n = 1, 2, . . ..

Lemma A.4.1 For all n = 1, 2, . . . , and all Qn in Qn, it holds that

L?(Hn, Qn)

= λE [σ]
n∑
k=1

(
eθk − 1

)(
1 +

n∑
j=k+1

eΘj−1−Θk
(
eθj − 1

)
P [σ̂ > j − k]

)
(A.4.1)

where Hn = {1, 2, . . . , n}.

Proof. Fix n = 1, 2, . . . , and Qn in Qn. Specializing Proposition 2.2.1 (iii) to the

case Tn = Hn = {1, 2, . . . , n}, we get

L?(Hn, Qn) = λE [σ]
n∑
k=1

(
eθk − 1

) n∑
j=k

eΘj−ΘkP [σ̂ + k ∈ Ij ] (A.4.2)
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where

Ij =

 (j, j + 1] , j = 1, 2, . . . , n− 1

(n,∞] , j = n.
(A.4.3)

By (A.4.3), we have

n∑
j=k

eΘj−ΘkP [σ̂ + k ∈ Ij ]

= eΘn−ΘkP [σ̂ + k > n] +
n−1∑
j=k

eΘj−ΘkP [j < σ̂ + k ≤ j + 1]

=
n∑
j=k

eΘj−ΘkP [σ̂ > j − k]−
n∑

j=k+1

eΘj−1−ΘkP [σ̂ > j − k]

= 1 +
n∑

j=k+1

(
eΘj−Θk − eΘj−1−Θk

)
P [σ̂ > j − k]

= 1 +
n∑

j=k+1

eΘj−1−Θk
(
eθj − 1

)
P [σ̂ > j − k] ,

which on comparison with (A.4.2) easily yields the required result.

To proceed with the proof of Proposition 2.2.3, we apply Lemma A.4.1 to the

reversed sequence Qr
n = (θn, θn−1, . . . , θ1). This gives

L?(Hn, Q
r
n)

= λE [σ]
n∑
k=1

(
eθ
r
k − 1

)(
1 +

n∑
j=k+1

eΘrj−1−Θrk

(
eθ
r
j − 1

)
P [σ̂ > j − k]

)
, (A.4.4)

where θri = θn+1−i, i = 1, 2, . . . , n so that Θr
j ≡

j∑
i=1

θri = Θn −Θn−j, j = 1, . . . , n.

Using the substitution k′ = n+ 1− j and j′ = n+ 1− k in (A.4.4) yields

L?(Hn, Q
r
n)
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= λE [σ]
n∑

j′=1

(
e
θr
n+1−j′−1

)(
1+

j′−1∑
k′=1

e
Θr
n−k′

−Θr
n+1−j′

(
eθ
r
n+1−k′ − 1

)
P [σ̂ >j′− k′]

)

= λE [σ]
n∑

j′=1

(
eθj′ − 1

)(
1 +

j′−1∑
k′=1

eΘj′−1−Θk′
(
eθk′ − 1

)
P [σ̂ > j′ − k′]

)

= λE [σ]
n∑
k=1

(
eθk − 1

)
+

n∑
j=1

j−1∑
k=1

eΘj−1−Θk
(
eθj − 1

)(
eθk − 1

)
P [σ̂ > j − k] .

Interchanging the order of summation and comparing with (A.4.1) establishes

(2.2.8), thus concluding the proof.

A.5 Proof of Proposition 2.2.4

As before, we view the M |G|∞ process {bt, t = 0, 1, . . .} as a sum of two indepen-

dent processes, {b(0)
t , t = 0, 1, . . .} and {b(a)

t , t = 0, 1, . . .}, the former representing

the contribution from the initial conditions, and the latter, that from the new

arrivals.

Let ΩI denote the underlying sample space on which the initial conditions

(b, {σ0,i, i = 1, 2, . . . }) , and therefore the process {b(0)
t , t = 0, 1, . . .}, are defined.

For any arbitrary realization of {b(a)
t , t = 0, 1, . . .}, consider initial conditions

ω1 and ω2 in ΩI giving rise to two distinct realizations of the busy server process,

denoted by {b(j)
t , t = 0, 1, . . .}, j = 1, 2.

For such a pair ω1, ω2 in ΩI , there exists an integer k(ω1, ω2) such that

b
(1)
t+k = b

(2)
t+k, k > k(ω1, ω2), t = 0, 1, . . . , (A.5.1)

indicating that no matter what the initial conditions, the two processes do even-

tually couple.
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Let PEQ denote the probability measure on ΩI , under which the rv b is Poisson

with rate λE [σ], and the rvs {σ0,i, i = 1, 2, . . .}, independent of b, are i.i.d. with

distribution Ĝ given by (2.1.1).

From the comments preceding Proposition 2.2.4 it is clear that the initial con-

ditions, when selected under probability measure PEQ, give rise to an M |G|∞

process satisfying

{bt, t = 0, 1, . . .} =st {b
?
t , t = 0, 1, . . .},

where {b?t , t = 0, 1, . . .} is the stationary and ergodic version of the busy server

process. In other words, when the initial conditions are selected under probability

measure PEQ, we have

{bt+k, t = 0, 1, . . .} =st {b
?
t , t = 0, 1, . . .}, (A.5.2)

for each k = 0, 1, . . ..

Due to the point–wise equivalence evident in (A.5.1) for large values of k, it

now follows that (A.5.2) holds under all other probability measures on ΩI (assum-

ing of course that the distribution Ĝ is not defective, i.e. that P [σ̂ =∞] = 0).

In other words, (A.5.2) holds as k → ∞, irrespective of the initial conditions

(b, {σ0,i, i = 1, 2, . . .}), thus concluding our proof.
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A.6 Proof of Proposition 2.3.2

We derive (2.3.5) from the log–moment generating function (2.2.3) of the process

{bt, t = 1, 2, . . .}: For each n = 1, 2, . . . , we have

L?(Tn, Qn) = lnE

[
exp

(
n∑
i=1

θibti

)]

= λE [σ]

( n∑
j=1

j∑
k=1

eΘj−Θk
(
eθk − 1

)
P [tj < σ̂ + tk ≤ tj+1]

)
for all Tn in Tn and Qn in Qn, with the convention tn+1 =∞.

Now, take n = 2 and denote the difference t2 − t1 by h. As is well known, the

covariance Γ(h) is given by

Γ(h) =
∂2E [exp (θ1bt1 + θ2bt2)]

∂θ1∂θ2

∣∣∣∣
θ1=θ2=0

− (λE [σ])2

=
∂2 exp

(
L?(T2, Q2)

)
∂θ1∂θ2

∣∣∣∣
θ1=θ2=0

− (λE [σ])2. (A.6.1)

We note that

L?(T2, Q2) = λE [σ]

( 2∑
j=1

j∑
k=1

eΘj−Θk
(
eθk − 1

)
P [tj < σ̂ + tk ≤ tj+1]

)
= λE [σ]

((
eθ1 − 1

) (
P [σ̂ ≤ h] + eΘ2−Θ1P [σ̂ > h]

)
+
(
eθ2 − 1

))
= λE [σ]

((
eθ1 − 1

)(
1 +

(
eθ2 − 1

)
P [σ̂ > h]

)
+
(
eθ2 − 1

))
.

Define Ci = eθi − 1, i = 1, 2, in which case

L?(T2, Q2) = L?C(h) = λE [σ]
(
C1 + C2 + C1C2P [σ̂ > h]

)
. (A.6.2)

We use the relations

∂L?(T2, Q2)

∂θ1

= λE [σ]
(
1 + C2P [σ̂ > h]

)
·
dC1

dθ1

= λE [σ]
(
1 + C2P [σ̂ > h]

)
(C1 + 1),
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∂L?(T2, Q2)

∂θ2
= λE [σ]

(
1 + C1P [σ̂ > h]

)
·
dC2

dθ2

= λE [σ]
(
1 + C1P [σ̂ > h]

)
(C2 + 1),

and

∂2L?(T2, Q2)

∂θ1∂θ2

= λE [σ]P [σ̂ > h] ·
dC1

dθ1

·
dC2

dθ2

= λE [σ]P [σ̂ > h] (C1 + 1)(C2 + 1)

to evaluate

∂2

∂θ1∂θ2

exp
(
L?(T2, Q2)

)∣∣∣∣
θ1=0,θ2=0

= exp
(
L?(T2, Q2)

)
·

(
∂L?(T2, Q2)

∂θ1
·
∂L?(T2, Q2)

∂θ2
+
∂2L?(T2, Q2)

∂θ1∂θ2

) ∣∣∣∣
θ1=0,θ2=0

= (λE [σ])2
(
1 + C2P [σ̂ > h]

)(
1 + C1P [σ̂ > h]

)
(C1 + 1)(C2 + 1)

∣∣∣∣
C1=0,C2=0

+λE [σ]P [σ̂ > h] · (C1 + 1)(C2 + 1)

∣∣∣∣
C1=0,C2=0

= (λE [σ])2 + λE [σ]P [σ̂ > h] ,

and the result now follows via (A.6.1).
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Appendix B

B.1 Proof of Lemma 3.4.3

Fix γ in IR, and define

Lm(γ) ≡
1

vm
ln

(
∞∑

n=m+1

e−γvn

)
, m = 1, 2, . . .

For γ ≤ 0, we obviously have Lm(γ) = ∞ for all m = 1, 2, . . ., and the desired

conclusion L(γ) = ∞ trivially follows. For γ > 0, the proof proceeds along the

two cases κ > 0 and κ = 0.

Case I – κ > 0: Write C = κ−1. For every ε > 0 with 0 < ε < C, there exists

a finite integer n? = n?(ε) such that (C − ε) lnn < vn < (C + ε) lnn whenever

n ≥ n?. Therefore,(
lnm

vm

)
L+ε
m (γ) ≤ Lm(γ) ≤

(
lnm

vm

)
L−εm (γ), m ≥ n? (B.1.1)

where we have used the notation

L±εm (γ) ≡
1

lnm
ln

(
∞∑

n=m+1

e−γ(C±ε) lnn

)

=
1

lnm
ln

(
∞∑

n=m+1

n−γ(C±ε)

)
, m = 1, 2, . . . (B.1.2)
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If γ > κ (or equivalently, γC > 1), then γ(C ± ε) > 1 for all ε > 0 small

enough, in which case all the quantities (B.1.2) are finite with

lim
m→∞

L±εm (γ) = 1− γ(C ± ε) (B.1.3)

by standard arguments. Letting m go to infinity in (B.1.1) and using the limiting

values (B.1.3), we get

lim inf
m→∞

Lm(γ) ≥ lim inf
m→∞

(
lnm

vm

)
L+ε
m (γ)

= κ(1− γ(C + ε))

and

lim sup
m→∞

Lm(γ) ≤ lim sup
m→∞

(
lnm

vm

)
L−εm (γ)

= κ(1− γ(C − ε))

and the desired conclusion follows because ε > 0 can be selected arbitrarily small.

If γ < κ (or equivalently, γC < 1), then γ(C + ε) < 1 for some ε > 0, in which

case L+ε
m (γ) =∞ for all m = 1, 2, . . ., yielding the required result via (B.1.1).

Case II – κ = 0: Noting that

Lm(γ) ≥
1

vm
ln e−γvm = −γ, m = 1, 2, . . .

so that L(γ) ≥ −γ, we see that the desired conclusion will follow if we can show

the reversed inequality

Lm(γ) ≤ −γ. (B.1.4)

To do so, we write φ(m) ≡ vm/ lnm for all m = 1, 2, . . .. The fact κ = 0 translates

into lim
m→∞

φ(m) =∞ with the sequence {φ(m), m = 1, 2, . . .} being monotone
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increasing in the tail by virtue of A1. This implies that for m large enough, we

have the inequality
1

γ
< φ(m) ≤ φ(n) for all n ≥ m, so that

∞∑
n=m+1

e−γvn =
∞∑

n=m+1

n−γφ(n)

≤
∞∑

n=m+1

n−γφ(m)

≤

∫ ∞
m

x−γφ(m)dx

=
m−γφ(m)+1

γφ(m)− 1
.

In that range, we see that

Lm(γ) ≤
1

φ(m) lnm
ln

(
m−γφ(m)+1

γφ(m)− 1

)
=
−γφ(m) + 1

φ(m)
−

ln(γφ(m)− 1)

φ(m) lnm

and taking the limit as m goes to infinity, we finally obtain (B.1.4).
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Appendix C

C.1 Proof of Lemma 4.2.1

Fix n = 1, 2, . . .. Applying Lemma A.4.1 for the particular case Hn = (1, 2, . . . , n)

and Q̃n = {θi = θ, i = 1, 2, . . . , n}, we get

L(Hn, Q̃n) = λE [σ]
n∑
k=1

(
eθk − 1

)(
1 +

n∑
j=k+1

eΘj−1−Θk
(
eθj − 1

)
P [σ̂ > j − k]

)

= λE [σ]
(
eθ − 1

) n∑
k=1

1 +
n∑

j=k+1

eθ(j−1−k)
(
eθ − 1

)
P [σ̂ > j − k]

= λE [σ]
(
eθ − 1

)(
n+

n∑
k=1

n∑
j=k+1

eθ(j−1−k)
(
eθ − 1

)
P [σ̂ > j − k]

)
.

Simplifying the double summation above, we get

n∑
k=1

n∑
j=k+1

eθ(j−1−k)
(
eθ − 1

)
P [σ̂ > j − k] =

n∑
k=1

n−k∑
r=1

eθr
(
1− e−θ

)
P [σ̂ > r]

=
(
1− e−θ

) n−1∑
r=1

n−r∑
k=1

eθrP [σ̂ > r]

=
(
1− e−θ

) n∑
r=1

(n− r)eθrP [σ̂ > r] ,

and the proof is now completed.
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C.2 Proof of Theorem 4.2.2

The tail probability P [σ̂ > r] can be expressed in terms of the distribution G

through the relation

E [σ]P [σ̂ > r] = E [(σ − r)+] =
∞∑

j=r+1

gj(j − r), r = 1, 2, . . . , (C.2.1)

which was derived in the proving of Lemma 2.3.1. Fixing n = 1, 2, . . . , and θ in

IR, we may now rewrite definition (4.2.4) as

∆(n, θ) =
1

n

n−1∑
r=1

(n− r)erθP [σ̂ > r]

=
1

nE [σ]

n−1∑
r=1

∞∑
j=r+1

gj(n− r)(j − r)e
rθ

=
1

nE [σ]

∞∑
j=2

gj

min(j,n)−1∑
r=1

(n− r)(j − r)erθ

=
1

nE [σ]

∞∑
j=1

gj

min(j,n)∑
r=1

(n− r)(j − r)erθ

=
1

nE [σ]
E

min(σ,n)∑
r=1

(n− r)(σ − r)erθ

 . (C.2.2)

Further simplification of the sum in (C.2.2) gives

min(σ,n)∑
r=1

(n− r)(σ − r)erθ

=

min(σ,n)∑
r=1

(
nσ − r(n+ σ) + r2

)
erθ

=

min(σ,n)∑
r=1

[(
r −

n+ σ

2

)2

−

(
n+ σ

2

)2

+ nσ

]
erθ

=

min(σ,n)∑
r=1

(
r −

n+ σ

2

)2

erθ −

(
n− σ

2

)2 min(σ,n)∑
r=1

erθ
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= e(
n+σ

2 )θ

n+σ
2
−1∑

q=|n−σ2 |

q2e−qθ −

(
n− σ

2

)2

eθ
(
eθmin(σ,n) − 1

eθ − 1

)
(C.2.3)

where we have set q = n+σ
2
− r. Using the standard expansion

∞∑
r=a

r2e−rθ =
e−θa

1− e−θ

(
a2 +

(2a+ 1) e−θ

(1− e−θ)
+

2e−2θ

(1− e−θ)2

)
, a = 1, 2, . . . ,

we find

n+σ
2
−1∑

q=|n−σ2 |

q2e−qθ =
∞∑

q=|n−σ2 |

q2e−qθ −
∞∑

q=n+σ
2

q2e−qθ

=
e−θ|

n−σ
2 |

1− e−θ

[(
n− σ

2

)2

+
(|n− σ|+ 1) e−θ

(1− e−θ)
+

2e−2θ

(1− e−θ)2

]

−
e−θ(

n+σ
2 )

1− e−θ

[(
n+ σ

2

)2

+
(n+ σ + 1) e−θ

(1− e−θ)
+

2e−2θ

(1− e−θ)2

]
,

which, when reported into (C.2.3) yields

(
1− e−θ

)min(σ,n)∑
r=1

(n− r)(σ − r)erθ

= eθmin(σ,n)

[(
n− σ

2

)2

+
|n− σ|+ 1

eθ − 1
+

2

(eθ − 1)2

]

−

(
n+ σ

2

)2

−
n+ σ + 1

eθ − 1
−

2

(eθ − 1)2

−

(
n− σ

2

)2 (
eθmin(σ,n) − 1

)
= eθmin(σ,n)

(
|n− σ|+ 1

eθ − 1
+

2

(eθ − 1)2

)
− nσ −

n+ σ + 1

eθ − 1
−

2

(eθ − 1)2 .

Incorporating this final step into (C.2.2), we get

∆(n, θ) =
1

nE [σ] (1− e−θ)
· E

[
eθmin(σ,n)

(
|n− σ|+ 1

eθ − 1
+

2

(eθ − 1)2

)
− nσ −

n+ σ + 1

eθ − 1
−

2

(eθ − 1)2

]
,
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or put differently,

nE [σ]
(
eθ − 1

) (
1 +

(
1− e−θ

)
∆(n, θ)

)
= E

[
eθmin(σ,n)

(
|n− σ|+ 1 +

2

eθ − 1

)
− (n+ σ + 1)−

2

eθ − 1

]
= E

[(
n+ σ + 1 +

2

eθ − 1
− 2 min(n, σ)

)(
eθmin(n,σ) − 1

)
− 2 min(n, σ)

]
= E

[(
(n− σ)+ + (σ − n)+ +

eθ + 1

eθ − 1

)(
eθmin(n,σ) − 1

)]
− 2E [min(n, σ)]

(C.2.4)

upon using the identities

σ = (σ − n)+ + min(n, σ) and n = (n− σ)+ + min(n, σ).

The result follows on comparing the left–hand side of (C.2.4) with (4.2.3), and

upon noting that

E
[
(n− σ)+

(
eθmin(n,σ) − 1

)]
= E

[
(n− σ)+

(
eθσ − 1

)]
,

and that

E
[
(σ − n)+

(
eθmin(n,σ) − 1

)]
=

(
eθn − 1

)
E
[
(σ − n)+

]
=

(
eθn − 1

)
E [σ]P [σ̂ > n] ,

where the final step ensues from (C.2.1).

C.3 Proof of Lemmas 4.5.4 and 4.5.5

In the interest of clarity, we discuss only the case when the sequence {v?n/n, n =

1, 2, . . .} is monotone decreasing, and leave it to the reader to extend the arguments
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to the asymptotically monotone case, an easy but tedious exercise. Moreover, for

each n = 1, 2, . . .,

0 ≤ ∆

(
n, θ

v?n
n

)
≤

n∑
r=1

eθ
v?n
n
r−v?r , θ ∈ IR,

so that we need only establish

lim
n→∞

v?n
n

n∑
r=1

eθ
v?n
n
r−v?r = 0,

in the range 0 < θ < 1.

A proof of Lemma 4.5.4: Fixing θ in the interval (0, 1) and n = 1, 2, . . ., we

note that

rθ
v?n
n
− v?r = r

(
θ
v?n
n
−
v?r
r

)
≤ r

(
θ
v?r
r
−
v?r
r

)
, r = 1, 2, . . . , n

so that

0 ≤
v?n
n

n∑
r=1

eθ
v?n
n
r−v?r ≤

v?n
n

n∑
r=1

e−(1−θ)v?r ,

and the conclusion immediately follows from the finiteness assumption (4.5.4) and

the fact that R = 0.

A proof of Lemma 4.5.5: This time, with θ in the interval (0, 1) and n = 1, 2, . . .,

we begin with the decomposition

v?n
n

n∑
r=1

eθ
v?n
n
r−v?r =

v?n
n

Z(n)∑
r=1

eθ
v?n
n
r−v?r +

v?n
n

n∑
r=Z(n)+1

eθ
v?n
n
r−v?r (C.3.1)

where Z(n) is as described by Assumption C2b. The analysis successively consid-

ers the two terms in this last expression.
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We first discuss the second term of (C.3.1): From the monotonicity of the

sequence {v?n/n, n = 1, 2, . . .}, we get

θ
v?n
n
r − v?r = (θ − 1)

v?n
n
r −

(
v?r
r
−
v?n
n

)
r ≤ (θ − 1)

v?n
n
r, r = 1, . . . , n

and it is now plain that

v?n
n

n∑
r=Z(n)+1

eθ
v?n
n
r−v?r ≤

v?n
n

n∑
r=Z(n)+1

e(θ−1)
v?n
n
r

=
v?n
n

(
e(θ−1)v?n

(n+1)
n − e(θ−1)

v?n
n

(Z(n)+1)

e(θ−1)
v?n
n − 1

)

=

(
e(θ−1)

v?n
n − 1
v?n
n

)−1 (
e(θ−1)v?n

(n+1)
n − e(θ−1)

v?n
n

(Z(n)+1)
)
.

Using Assumption C2b, we readily conclude

lim
n→∞

v?n
n

n∑
r=Z(n)+1

eθ
v?n
n
r−v?r = 0. (C.3.2)

Next, going back to the first term of (C.3.1), we note for 0 < θ < 1 that

θ
v?n
n
r − v?r ≤ θ

v?r
r
r − v?r ≤ (θ − 1)

v?Z(n)

Z(n)
r, r = 1, . . . , Z(n)

by the monotonicity of the sequence {v?n/n, n = 1, 2, . . .}. Therefore,

v?n
n

Z(n)∑
r=1

eθ
v?n
n
r−v?r ≤

v?n
n

Z(n)∑
r=1

e
(θ−1)

v?
Z(n)
Z(n)

r

=
v?n
n
e

(θ−1)
v?
Z(n)
Z(n)

 e
(θ−1)v?

Z(n) − 1

e
(θ−1)

v?
Z(n)
Z(n) − 1


= e

(θ−1)
v?
Z(n)
Z(n)

e(θ−1)
v?
Z(n)
Z(n) − 1
v?
Z(n)

Z(n)

−1

v?n
n

Z(n)

v?Z(n)

(
e

(θ−1)v?
Z(n) − 1

)
.

Again by Assumption C2b we have

lim
n→∞

v?n
n

Z(n)∑
r=1

eθ
v?n
n
r−v?r = 0. (C.3.3)
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Combining (C.3.1), (C.3.2) and (C.3.3) readily gives the result.
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Appendix D

D.1 Proof of Proposition 5.2.2

Proposition 5.2.2, (i) follows through the discussion prior to the statement of

Proposition 5.2.1. Inequalities (5.2.5) and (5.2.6) come about via Proposition 3.4.3

and Theorem 4.6.1, with

γ?(â,v̂) = sup
y>0

min

(
sup
θ>0

lim inf
n→∞

inf
x>y

(
v̂n

h(â,v̂)(xân)
(θx− Λ(â,v̂)(θ))

)
,

Λ?(â,v̂)(0)g(â,v̂)(y)

)
− κ(â,v̂)g(â,v̂)(y)

= sup
y>0

min

(
sup
θ>0

lim inf
n→∞

inf
x>y

(
v̂n

h(â,v̂)(xân)

(
θx−

1

K̂
Λ(a,v)

(
K̂

α̂

α
θ

)))
,

1

K̂
Λ?(a,v)(0)g(â,v̂)(y)

)
− κ(â,v̂)g(â,v̂)(y).

Using (5.2.4) and the substitution θ′ = K̂
α̂

α
θ, gives

γ?(â,v̂) =
1

K̂
sup
y>0

min

(
sup
θ′>0

lim inf
n→∞

inf
x>y

(
v̂n

h(â,v̂)(xân)

(
θ′
α

α̂
x− Λ(a,v)(θ′)

))
,

Λ?(a,v)(0)g(â,v̂)(y)

)
− κ(a,v)g(â,v̂)(y)

=
1

K̂
sup
y>0

min

(
sup
θ>0

lim inf
n→∞

inf
x>y

(
v̂n

h(a,v)(xân)

(
θ
α

α̂
x− Λ(a,v)(θ)

))
,

Λ?(a,v)(0)K̂g(a,v)
(α
α̂
y
))
− κ(a,v)K̂g(a,v)

(α
α̂
y
)
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by Lemma 5.1.3. Setting x′ =
α

α̂
x and y′ =

α

α̂
y, we have

γ?(â,v̂) = sup
y′>0

min

(
sup
θ>0

lim inf
n→∞

inf
x′>y′

(
1

K̂

v̂n

h(a,v)
(
x′ α̂
α
ân
) (θx′ − Λ(a,v)(θ)

))
,

Λ?(a,v)(0)g(a,v)(y′)

)
− κ(a,v)g(a,v)(y′) (D.1.1)

By (4.6.5), for any ε > 0, there exists N(ε) such that

1− ε ≤
α̂ân
αan

≤ 1 + ε, n > N(ε),

and the monotone increasing nature of h yields

h(xan(1− ε)) ≤ h

(
xan

α̂

α

ân
an

)
≤ h(xan(1 + ε)), n > N(ε),

thereby implying

v̂n

h(a,v)
(
x α̂
α
ân
) ≤ v̂n

h(a,v)(xan(1− ε))
, n > N(ε).

Now fix θ > 0. Setting x′′ = x(1− ε), we have

inf
x>y

(
v̂n

h(a,v)
(
x α̂
α
ân
) (θx− Λ(a,v)(θ)

))

≤ inf
x′′>y(1−ε)

(
v̂n

h(a,v)(x′′an)

(
θ

(1− ε)
x′′ − Λ(a,v)(θ)

))
≤ inf

x>y

(
v̂n

h(a,v)(xan)

(
θ

(1− ε)
x− Λ(a,v)(θ)

))
≤ inf

x>y

(
v̂n

h(a,v)(xan)

(
θx− Λ(a,v)(θ)

))
, n > N(ε). (D.1.2)

A lower bound can be similarly derived and is given by

inf
x>y

(
v̂n

h(a,v)
(
x α̂
α
ân
) (θx− Λ(a,v)(θ)

))

≥ inf
x>y

(
v̂n

h(a,v)(xan)

(
θ

(1 + ε)
x− Λ(a,v)(θ)

))
, n > N(ε). (D.1.3)
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Combining (D.1.2) and (D.1.3) we have

lim inf
n→∞

inf
x>y

(
v̂n

h(a,v)(xan)

(
θ

(1 + ε)
x− Λ(a,v)(θ)

))
≤ lim inf

n→∞
inf
x>y

(
v̂n

h(a,v)
(
x α̂
α
ân
) (θx− Λ(a,v)(θ)

))

≤ lim inf
n→∞

inf
x>y

(
v̂n

h(a,v)(xan)

(
θx− Λ(a,v)(θ)

))
.

This being true for every ε > 0, we conclude that

lim inf
n→∞

inf
x>y

(
v̂n

h(a,v)
(
x α̂
α
ân
) (θx− Λ(a,v)(θ)

))

= lim inf
n→∞

inf
x>y

(
v̂n

h(a,v)(xan)

(
θx− Λ(a,v)(θ)

))
= K̂ lim inf

n→∞
inf
x>y

(
vn

h(a,v)(xan)

(
θx− Λ(a,v)(θ)

))
.

Reporting this conclusion back into (D.1.1), gives

γ?(â,v̂) = sup
y>0

min

(
sup
θ>0

lim inf
n→∞

inf
x>y

(
vn

h(a,v) (xan)

(
θx− Λ(a,v)(θ)

))
,

Λ?(a,v)(0)g(a,v)(y)

)
− κ(a,v)g(a,v)(y)

= γ?(a,v),

and the proof is complete.

D.2 Proof of Lemma 5.3.2

From the definitions (2.1.1) and (2.3.1), we have

v?n = − ln

(
∞∑
i=n

P [σ > i]

E [σ]

)

= lnE [σ]− ln

(
∞∑
i=n

e−w
?
i

)
, n = 1, 2, . . . ,
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whence

lim sup
n→∞

v?n
w?n

= − lim sup
n→∞

ln

(
∞∑
i=n

e−w
?
i

)
w?n

, (D.2.1)

and

lim inf
n→∞

v?n
w?n

= − lim inf
n→∞

ln

(
∞∑
i=n

e−w
?
i

)
w?n

. (D.2.2)

By virtue of the simple lower bound

e−w
?
n ≤

∞∑
i=n

e−w
?
i , n = 1, 2, . . . ,

we immediately infer that

lim sup
n→∞

v?n
w?n

≤ 1, (D.2.3)

irrespective of the value taken by W .

Case I: W = 0.

Assuming that the sequence
lnn

w?n
is asymptotically monotone decreasing, we find

that

∞∑
i=n

e−w
?
i =

∞∑
i=n

e
−

(
w?i
ln i

)
ln i

≤
∞∑
i=n

e
−
(
w?n
lnn

)
ln i

≤

∫ ∞
i=n−1

x
−
(
w?n
lnn

)
dx

=
(n− 1)

1−
(
w?n
lnn

)
w?n
lnn
− 1

for n large enough. Therefore

lim inf
n→∞

v?n
w?n

≥ lim inf
n→∞


(
w?n
lnn
− 1
)

ln(n− 1)

w?n
+

ln
(
w?n
lnn
− 1
)

w?n


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= lim inf
n→∞

 ln(n− 1)

lnn
−

ln(n− 1)

w?n
+

ln
(
w?n
lnn
− 1
)

(
w?n
lnn

)
lnn


= 1,

which, in combination with (D.2.3), yields the required result.

Case II: 0 < W < 1.

By (5.3.2), we know that for any δ > 0, there exists an integer N(δ) so that

1

W
− δ ≤

w?n
lnn
≤

1

W
+ δ, n > N(δ). (D.2.4)

Therefore, for n > N(δ) we have

∞∑
i=n

e−w
?
i ≤

∞∑
i=n

i−(
1
W
−δ)

≤

∫ ∞
n−1

x−(
1
W
−δ)dx

=
(n− 1)1−( 1

W
−δ)

1
W
− δ − 1

,

and referring to (D.2.2) we conclude that

lim inf
n→∞

v?n
w?n

≥

(
1

W
− δ − 1

)
lim inf
n→∞

ln(n− 1)

w?n
+ lim inf

n→∞

ln
(

1
W
− δ − 1

)
w?n

= W

(
1

W
− δ − 1

)
. (D.2.5)

The corresponding upper bound, similarly derived, is given by

lim sup
n→∞

v?n
w?n

≤ W

(
1

W
+ δ − 1

)
. (D.2.6)

The desired result now follows through the observation that the bounds (D.2.5)

and (D.2.6) hold for any δ > 0.
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